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Abstract

Computing power, or "compute," is crucial for the development and deployment of artificial intelligence (AI)
capabilities. As a result, governments and companies have started to leverage compute as a means to govern AI. For
example, governments are investing in domestic compute capacity, controlling the flow of compute to competing
countries, and subsidizing compute access to certain sectors. However, these efforts only scratch the surface of
how compute can be used to govern AI development and deployment. Relative to other key inputs to AI (data and
algorithms), AI-relevant compute is a particularly effective point of intervention: it is detectable, excludable, and
quantifiable, and is produced via an extremely concentrated supply chain. These characteristics, alongside the singular
importance of compute for cutting-edge AI models, suggest that governing compute can contribute to achieving
common policy objectives, such as ensuring the safety and beneficial use of AI. More precisely, policymakers could
use compute to facilitate regulatory visibility of AI, allocate resources to promote beneficial outcomes, and enforce
restrictions against irresponsible or malicious AI development and usage. However, while compute-based policies
and technologies have the potential to assist in these areas, there is significant variation in their readiness for
implementation. Some ideas are currently being piloted, while others are hindered by the need for fundamental
research. Furthermore, naïve or poorly scoped approaches to compute governance carry significant risks in areas
like privacy, economic impacts, and centralization of power. We end by suggesting guardrails to minimize these
risks from compute governance.

Each author contributed ideas and/or writing to the paper. However, being an author does not imply agreement with every claim made in
the paper, nor does it represent an endorsement from any author’s respective organization.

∗ Denotes primary authors, who contributed most significantly to the direction and content of the paper. Both primary authors and other
authors are listed in approximately descending order of contribution.

† Indicates the corresponding authors: Girish Sastry (girish@openai.com), Lennart Heim (lennart.heim@governance.ai), and Haydn
Belfield (hb492@cam.ac.uk). Figures can be accessed at https://github.com/lheim/CPGAI-Figures.
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1 Introduction and Summary

Artificial intelligence (AI) has made tremendous strides over the past decade, fueled in
large part by a sharp exponential increase of computing power applied to the training
of deep neural networks. This increased computing power (“compute”) has been a key
enabler of the current wave of AI, including large language models and “generative
AI,” for which general performance predictably improves as more compute is applied
(Wei et al. 2022; Ganguli et al. 2022; Kaplan et al. 2020).

Increasingly powerful AI systems could profoundly shape society over the coming
years; indeed, they are already affecting many areas of our lives, such as productivity,
mobility, health, and education (Peng et al. 2023). The risks and benefits of AI raise
questions about the governance of AI: what are the norms, institutions, and policies
that can influence the trajectory of AI for the better (Dafoe 2018)? The central thesis
of this paper is that governing AI compute can play an important role in the governance
of AI. Other inputs and outputs of AI development (data, algorithms, and trained
models) are easily shareable, non-rivalrous intangible goods, making them inherently
difficult to control; in contrast, AI computing hardware is tangible and produced using
an extremely concentrated supply chain.

Policymakers are already making significant decisions about compute. Governments
have invested heavily in the domestic production of compute, imposed export controls
on sales of computing hardware to competing countries, and subsidized compute
access to those outside of big technology companies (Weinstein and Wolf 2023). These
early steps, however, do not exhaust the potential ways in which intervening on
compute can be used to guide the development and deployment of AI.1

Without prescribing specific policies, we argue that compute can be leveraged in many
specific ways to enhance three key areas of governance. First, governance of compute
can help increase regulatory visibility into AI capabilities and use; second, it can steer
AI progress by changing the allocation of resources toward safe and beneficial uses
of AI; third, it can enhance enforcement of prohibitions against reckless or malicious
development or use. Improvements in these three governance capacities can help
achieve a range of policy objectives, like achieving public safety and ensuring equitable
access to AI capabilities.

However, just as compute alone does not determine AI capabilities, governance of
compute is not the whole story of AI governance. For example, approaches beyond
compute governance are likely needed to address small-scale uses of compute that

1While the author did not explore compute’s role in AI governance in as much detail as we do, T.
Hwang (2018) was among the first to highlight its significance and outline some of its implications.

2



could pose major risks, like specialized AI applied to military use.2

Moreover, if not implemented carefully, compute governance can pose risks to privacy
and other critical values. Since compute governance is still in its infancy, policymak-
ers have limited experience in managing its unintended consequences. To mitigate
these risks, we recommend implementing key safeguards, such as focusing on gover-
nance of industrial-scale compute and incorporating privacy-preserving practices and
technology.3

This paper discusses a range of policy options and considerations available to different
governing entities with decision-making authority. We use the term “policymaker”
generically to refer to (ideally legitimate) authorities that can implement changes to
norms, policies, processes, laws, and specific behaviors. This does not just include
governments, and is meant to be an expansive definition. For example, national
security policymakers, decision-makers at AI companies, lawmakers, standard-setting
bodies, and international coalitions of governments are all included. Throughout this
paper, we will specify which policymakers are most relevant to particular discussions.4

The remainder of the paper is structured as follows.

In Section 2, “Overview of AI Capabilities, AI Governance, and Compute,” we
provide basic context on several topics that serve as foundations for later sections.
We discuss human capital, data, algorithms, and compute as the key inputs of AI
development. We then characterize the steps of the AI lifecycle (consisting of design,
training, enhancement, and deployment)—each of which presents a possible point of
intervention (and has a unique compute footprint). We go on to discuss the impacts
AI could have on society to motivate the importance of its responsible governance. To
contextualize later sections, we then review ongoing efforts in governing compute.

In Section 3, “Why Compute Governance Is Attractive for Policymaking,” we
explain the features of compute that make it an attractive tool for AI governance. This
stems from compute’s singular importance to frontier models, and several properties
of compute that augment its efficacy as a governance strategy:

Detectability: Large-scale AI development and deployment is highly resource-
intensive, often requiring thousands of specialized chips in a high-performance
cluster hosted in a large data center consuming large amounts of power.

2One emerging approach is to move towards measurements of the AI system’s capabilities directly
(Shevlane, Farquhar, et al. 2023; Anthropic 2023; OpenAI 2023). See M. M. Maas (2023a) for other
levers of AI governance.

3We discuss these risks and guardrails in Section 5.
4This choice is mainly to balance abstraction and precision. We hope that this paper will also be useful

to anyone interested in AI governance, including civil society and advocacy organizations.
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It can enable these critical governance capacities...

Enforcement
The ability to ensure compliance with AI 
regulations and standards.

Visibility
The ability to track and assess the 
development and use of advanced AI.

Allocation
The ability to influence which AI systems 
are built, when, and by whom.

Because compute has these properties...

Quantifiability
Computational power can be 
easily measured, reported, 
and verified.

Excludability
The physical nature of 
hardware makes it possible to 
exclude users from accessing 
AI chips. In contrast, 
restricting access to data, 
algorithms, or trained models 
is much more difficult.

Supply chain 
concentration
AI chips are produced via a 
highly inelastic and complex 
supply chain, several key 
steps of which (e.g. design, 
EUV lithography, and 
fabrication) are dominated by 
a small number of actors.

Detectability
Large-scale AI training and 
deployment is highly resource 
intensive, often requiring 
thousands of specialized chips 
in a high-performance cluster 
hosted in a large data center 
consuming large amounts  
of power.

Figure 1: Summary of the core concepts in the report. Compute is attractive for
policymaking because of four properties. These properties can be leveraged to design and
implement policies that enable three critical capacities for the governance of AI.

Excludability: The physical nature of hardware makes it possible to exclude users
from accessing AI chips.5 In contrast, restricting access to data, algorithms, or
trained models is much more difficult.

Quantifiability: Computational power can be easily measured, reported, and
verified.

Supply chain concentration: AI chips are produced via a highly inelastic and
complex supply chain, several key steps of which (e.g., design, EUV lithography,
and fabrication) are dominated by a small number of actors.

Readers already convinced of compute’s importance and special properties, but who
wonder how compute governance might be extended beyond existing efforts, may
consider jumping to Section 4, “Compute Can Enhance Three AI Governance
Capacities,” where we explore how compute can be used to enhance key governance
capacities: (a) increasing the visibility of AI development through monitoring compute,
(b) changing the allocation of compute to enable beneficial development, and (c) using
compute for enforcement of norms and regulations around AI.

5We use “AI chips” in this paper to refer to data center-grade, high-end chips targeted at AI use cases.
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We provide several illustrative policy mechanisms for visibility, allocation, and enforce-
ment. The authors vary significantly in their views of which of these, if any, would
be desirable. As important as whether these mechanisms are adopted is the question
of how they are designed, implemented, and updated: subtle details of design and
implementation could determine whether a compute governance policy is beneficial or
detrimental on balance. To emphasize this point, we also note how these mechanisms
could cause bad outcomes if designed or implemented poorly.

The illustrative mechanisms we explore are:

A Visibility

1. Using public information about compute quantities to estimate actors’ AI
capabilities (now and in the future)

2. Required reporting of training compute usage from cloud providers and AI
developers

3. International AI chip registry

4. Privacy-preserving workload monitoring

B Allocation

1. Differentially advancing beneficial AI development

2. Redistributing AI development and deployment across and within countries

3. Changing the overall pace of AI progress

4. Collaborating on a joint AI megaproject

C Enforcement

1. Enforcing “compute caps” via physical limits on chip-to-chip networking

2. Hardware-based remote enforcement

3. Preventing risky training runs via multiparty control

4. Digital norm enforcement

In Section 5, “Risks of Compute Governance and Possible Mitigations,” we synthe-
size our previous discussion of the possible limitations of compute governance. We
emphasize the following (non-exhaustive) risks from compute governance:

A Unintended Consequences

1. Threats to personal privacy
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2. Opportunities for leakage of sensitive strategic and commercial information

3. Risks from centralization and concentration of power

B Issues of Feasibility and Efficacy

1. Algorithmic and hardware progress

2. Low-compute narrow models with dangerous capabilities

3. Incentives for diversion, evasion, circumvention, and decoupling

Given those potential downsides, we suggest some guardrails for compute governance:

1. Exclude small-scale AI compute and non-AI compute from governance

2. Research and implement privacy-preserving practices and technologies

3. Only use compute-based controls for risks where ex ante controls are justified

4. Periodically revisit controlled computing technologies

5. Implement all controls with substantive and procedural safeguards

We also provide two appendices: Appendix A: “The Compute-Uranium Analogy”,
and Appendix B: “Research Directions”.
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2 Overview of AI Capabilities,
AI Governance, and Compute

In this section, we provide an overview of key empirical context for the arguments
and ideas in the following sections.

The section proceeds as follows: First, we describe how AI capabilities are created, and
the role of compute in that process. Second, we define AI governance and describe
key themes and trends in this area. Finally, we give four current examples of compute
being leveraged for AI governance purposes.

2.A Creating AI Capabilities

Artificial intelligence (AI) refers to the science and engineering of building digital
systems capable of performing tasks commonly thought to require intelligence, with
this behavior often being learned rather than directly programmed.6 The three key
technical inputs to producing AI capabilities are data, algorithms, and compute, also
referred to as the “AI triad” (Buchanan 2020).7 People provide the necessary technical
and scientific expertise (“talent,” or human capital) to orchestrate the AI triad in order
to produce a trained model.

Data, algorithms, compute, and human capital each play pivotal roles in the develop-
ment and deployment of AI. Data is the raw material that is processed by compute;
put differently, compute is the “engine” fueled by large amounts of data.8 There is a
growing industry focused on producing this data,9 and significant investment in new
ways of generating valuable training data with less human involvement.10 Algorithms

6Adapted from Brundage, Avin, J. Wang, et al. (2020). When learning is involved, this subset of AI is
often referred to as “machine learning” (ML). We focus on ML in this paper, given the strong empirical
performance of ML-based systems compared to others.

7We focus on the subset of AI referred to as deep learning specifically here, rather than all of AI, given
its disproportionate role in current high-profile deployments and policy discussions. Compared to some
other AI techniques such as classical planning, deep learning is disproportionately compute-intensive,
which admittedly biases our analysis toward the conclusion that compute is important, though we think
this focus is justified by the predominance of deep learning.

8The volume of data used to train cutting-edge AI systems has grown dramatically over the last decade
(Villalobos and A. Ho 2022).

9For example, there is a growing industry focused on “data labeling”—paying humans to perform
tasks so that AI systems can be trained on that data, or to grade AI systems on their current performance.
Data labeling is estimated to be a $5 billion dollar market in 2023, much of it outsourced to developing
countries due to lower wages (Kshetri 2021).

10For example, see Bai et al. (2022).
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The AI Triad: Inputs to AI Development

Data
The raw material upon which AI models are trained.

Algorithms
Software that leverages computing power to process 
data and generate model weights.

Compute
The computing power (from the associated hardware 
and software) that powers AI training.

Human 
capital AI Development

Figure 2: The AI Triad. The three key technical inputs to AI are data, algorithms, and
compute. Human capital is required for all inputs.

dictate the operations that are performed on data to produce AI capabilities.11 Algo-
rithms encompass the source code that defines everything from the architecture of AI
models to the specific methodologies employed in the training. Computing power (and
the associated hardware and software), is used to execute algorithms, and serves as
the “substrate” for the information processing involved in AI. Finally, human capital
is important to produce data, algorithms, and compute and to operate the training
process itself.12

Compute has played a particularly prominent role in recent AI progress. The advent
of the deep learning era around 2010–2012 can be attributed to the initial use of
GPUs (Graphics Processing Units—specialized chips originally developed for graphics
rendering) for training AI systems (Krizhevsky, Sutskever, and Hinton 2017; Amodei
and Hernandez 2018; Sevilla, Heim, A. Ho, et al. 2022). This enabled AI systems to
grow significantly in size, providing the “deep” in “deep learning.” AI chips provide
significant efficiency and performance boosts to AI systems (S. Khan and Mann 2020).

11Better algorithms essentially improve capabilities without increasing the required investment (Pilz,
Heim, and N. Brown 2023). Algorithmic breakthroughs such as the Transformer architecture significantly
increased the efficiency with which compute and data are converted into capable models (Vaswani et al.
2017; Hernandez and T. B. Brown 2020; Erdil and Besiroglu 2022a; Hoffmann et al. 2022).

12For example, the Transformer architecture (Vaswani et al. 2017) was invented using similar amounts
of data and compute to what was available previously. Human capital is also used to train AI systems:
humans essentially “teach” machine learning models by demonstrating how to do a task or providing
feedback.
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AI Model Enhanced 
AI Model

Simplified AI Lifecycle

Design Training Enhancement

Development Deployment

Model 
Architecture

Figure 3: A Simplified AI lifecycle. In the compute-intensive Development stage, the
model is designed, trained, and enhanced. The model is then put to use in the Deployment
Stage. Many copies of the model can be run during Deployment.

Development of frontier AI systems has become increasingly synonymous with large
compute budgets, access to large computing clusters,13 and the proficiency to leverage
them effectively (Besiroglu, Bergerson, et al. 2024). However, it is important to note
that not all AI applications require vast amounts of compute; specialized AI systems
have displayed impressive abilities in some domains, even by using much less compute
than frontier systems.14

Most current progress in AI leverages a technology called artificial neural networks.
After a neural network model is trained, it becomes capable of executing different
tasks, such as writing computer code, generating images, or acting and responding to
sensory input. These trained models are then often deployed as a general-purpose
system, such as a chatbot, or as a sub-component of some other product or service.

A simplified model of the AI lifecycle consists of two main phases: the development
phase and the deployment phase (Figure 3). In the development phase, AI systems
are trained and optimized, whereas in the deployment phase, these systems are put
toward solving a variety of tasks, based on the knowledge and skills they learned
during training (OECD 2023).

13We use the word “cluster” to refer to any amount of compute that can be viewed as a single system
(even if each computing element is geographically distributed). In the context of AI, these are typically
geographically concentrated in large data centers, to reduce inefficiencies from communication cost.

14For more discussion on this point, see Section 5.
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In the development phase, AI systems are designed, trained, and enhanced. Design
involves determining the general characteristics of an AI model (e.g., how many
layers the neural network will have), the dataset that will be used, and how to
train the model (e.g., how many times to “look at” each data point). Training is a
process that involves learning from vast amounts of data, often sourced from the
internet (e.g., public domain websites or images). Training is also the most compute-
intensive part of AI development, i.e., performing a large number of computational
operations (often measured as “floating point operations”).15 The compute required
for training is determined by factors such as the system’s architecture, the size of the
architecture (i.e., the number of trainable “weights”), the volume and quality of data
presented to the system, the number of times this data is reused, and the training
algorithm. Other “enhancements” like fine-tuning and reinforcement learning from
human feedback are also effective at increasing the usefulness and capabilities of an
AI system. Enhancement typically requires much less compute than pre-training.

A trained model can then be distributed and deployed for various applications, marking
the beginning of the deployment phase. In this phase, the model performs “inferences”
by processing inputs and making predictions (e.g., about which word would come next
in a sentence, or what the answer to a question is). The inference compute needed
for deployment is essentially a product of the architecture and parameter size of the
model and the number of instances of the model being deployed. Although there
are many methods to make inference more efficient,16 it is reasonable to say that, all
things being equal, larger and more performant AI systems require higher compute
budgets for a single inference. Often, trained models are deployed as part of a larger
AI system, which includes non-machine-learning components (like user interfaces and
access controls).

Both large-scale training and inference processes require centralized, high-performance
computing systems optimized for AI workloads housed within data centers. Due to
the immense scale of current model deployment, the majority of all AI compute is
now used for inference, even though a single training run requires far more compute
than a single inference. For example, widely used AI applications such as internet
search, voice recognition, and language translation all require large-scale compute
infrastructure to serve billions of users; running these applications at scale requires

15“Floating point operations” are used when a high-degree of precision is required to represent numbers
in a computer, and are common for tasks that require large-scale mathematical calculations. However,
recent progress in AI has raised the possibility of using lower-precision representations of numbers (and
“integer” representations), which increases the processing speed of each operation. Presently, most AI
training predominantly uses floating point numbers, but this could change in the future (Ghaffari et al.
2022).

16Such methods include pruning, distillation, fine-tuning, and others (K. Miller and Lohn 2023;
Menghani 2023).
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many billions of inferences from AI models.17

2.B AI Governance

“AI governance” refers to the study or practice of local and global governance systems—
including norms, policies, laws, processes, and institutions—that govern or should
govern AI research, development, deployment, and use (Hua and Belfield 2021).18

As AI systems gain increased capability across a wide range of domains, they have the
potential for incredibly beneficial applications in health care, energy, entertainment,
and many other business and public services (Abramoff et al. 2023; Seger, Ovadya,
et al. 2023). The use of AI systems is widely expected to have a positive impact on
productivity and living standards (Brynjolfsson, Li, and Raymond 2023; Czarnitzki,
Fernández, and Rammer 2023; Baily, Brynjolfsson, and Korinek 2023), but the realized
benefits will depend on the regulatory and governance structures adopted. AI could
also pose risks that are more extreme in nature (Shevlane, Farquhar, et al. 2023). These
include highly effective and widespread surveillance to oppress populations (Peterson
and Hoffman 2022), large-scale influence operations (Goldstein et al. 2023), biological
weapons (Mouton, Lucas, and Guest 2023), threats to international stability (Imbrie
and Kania 2019; Horowitz and Scharre 2021; Shoker et al. 2023), and the potential
for AI to deliberately cause harm due to misalignment (Ngo, L. Chan, and Mindermann
2023). Mismanagement of such risks could lead to human disempowerment or even
extinction (CAIS 2024; Russell 2019).

Compute governance—the topic of this paper—is one tool for AI governance. Other
tools for AI governance include, for example, model performance standards on tests
or evaluations and rules establishing requirements about the training data, technical
methods, and personnel used to produce AI (Shevlane, Farquhar, et al. 2023).

2.C Compute Governance Today

Governments around the world are already targeting compute. This is mostly in
the context of geopolitical efforts to ensure that their countries are able to thrive

17For example, AWS estimated that 90% of its workload is inference (Patterson, Gonzalez, Le, et al.
2021). We discuss other reasons this is likely true in Section 3.A.

18AI governance involves the establishment of regulations, standards, best practices, and decision-
making processes by governments and society to ensure the development and use of AI are beneficial
and align with societal well-being (Dafoe 2018). See also M. M. Maas (2023b), ÓhÉigeartaigh et al.
(2020), Dafoe (2023), and Schuett (2023).
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in the unfolding AI revolution and to prevent confirmed or suspected misuses from
adversaries.19 We point to this not to suggest that what is being done is wise or
effective. But these cases demonstrate that compute governance is not a purely
theoretical idea: it is already happening today. Here we discuss four examples:
investing in domestic compute capacity, subsidizing compute access to those outside
big technology companies, imposing export controls on competing countries, and
setting compute-based reporting thresholds. We also discuss some emerging concerns
with the role of compute in AI governance. These actions—and the concerns raised
in response—emphasize the need for a holistic theory and appraisal of compute
governance, which this paper aims to provide.

Investment in domestic compute capacity

Compute is a key resource for modern economies and societies, so the amount of
compute possessed by different states is a key topic of interest to those states (OECD
2023; OECD 2024). Access to compute is arguably comparable in economic and
societal importance to access to the internet and the infrastructure of undersea cables
that support it, and perhaps even to energy infrastructure. Much as they have with
those other resources, many governments have become increasingly interested in the
vulnerabilities that compute dependence may create. Access to compute provided by
foreign-located and/or foreign-owned data centers may be vulnerable to espionage,
sabotage, price hikes, political interference, or geopolitical interventions (Belfield
2023; Hogarth 2018; Chander and Lê 2015).

Affecting the distribution of compute between countries is becoming a key point
of intervention by governments.20 The EU and the U.S. have both provided $50
billion in subsidies to semiconductor manufacturing in their respective CHIPS Acts
(Browne 2023; Shepardson 2022). In the U.S., Europe, and China there is significant
government interest in acquiring sovereign cloud computing centers (Chander and Lê
2015; Pilz and Heim 2023). There has been extensive discussion of both compute and
AI “sovereign capability” in the U.K., France, and Germany (Belfield 2023).21

The U.S., China, and Russia have long-standing supercomputing programs includ-
ing, for example, the U.S. Department of Energy’s Advanced Scientific Computing

19However, these efforts are unequally distributed: it is mostly a handful of countries, concentrated in
the Global North, that are engaging in compute governance. We discuss these equity issues further in
Section 4.B.

20For example, the OECD AI Compute and Climate group whose mission is to promote compute access
(OECD 2024).

21“Sovereign” capability can refer to a capability either located in a particular country, or located and
owned by a company or other group within a particular country. See the distinction between “own,
collaborate, and access” (UK Cabinet Office 2021). For compute sovereignty, see Aleph Alpha (2023),
Lawrance (2023), and Wanat (2023).
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Research program. Projects for civilian use include Japan’s consistent investment
in supercomputing, including the nearly $1 billion Fugaku, and Australia’s National
Research Infrastructure (though these focus more on scientific computing rather than
AI). Governments are investing in publicly funded and owned national compute in-
frastructure specifically for AI in the U.S. (the NAIRR), the U.K. (AIRR), and the EU
(EuroHPC) (US NAIRR 2023; UK DSIT 2023; EuroHPC 2024).

Subsidizing compute access

Currently, most AI compute is concentrated in the hands of private industry (Be-
siroglu, Bergerson, et al. 2024; Verdegem 2022). Because the distribution of compute
between AI developers affects markets and outcomes for consumers and citizens, there
may be good reasons to support increased use of AI computing infrastructure by other
sectors, including academia, civil society, and governments.

Training large AI models and delivering access to them at scale requires access to
large amounts of compute. Without that, building this class of models is out of reach:
there are experiments one simply cannot run, and products (and services) one cannot
build. Some companies (like Meta, Google, and Amazon) are of a sufficient scale
that they own their own compute, but most AI developers rely on accessing cloud
compute from infrastructure-as-a-service (IaaS) companies. This market (outside of
China) is dominated by three companies, termed “hyperscalers”: Amazon (through
Amazon Web Services), Microsoft (through Azure), and Google (through Google Cloud
Platform). Today, most major developers of large models are either subsidiaries of the
hyperscalers, or have entered into “compute partnerships” with them. This includes
Anthropic, Cohere, Google DeepMind, Hugging Face, OpenAI, Stability AI, and many
others (Benaich and Hogarth 2022; Anthropic 2024; HuggingFace 2023).

The compute available to academics has not grown at anywhere near the rate available
to the public sector (Ahmed and Wahed 2020; Besiroglu, Bergerson, et al. 2024). The
compute disparity between industry and other AI developers such as academics is one
reason that many AI and computer science professors have gone to work full-time
or part-time in industry (Zwetsloot and Corrigan 2022). This may have concerning
effects such as fewer professors available to train the next generation of PhD graduates,
and less research focused on non-commercial public goods or verifying companies’
claims.

Given these considerations, changing the distribution of compute between AI de-
velopers is considered a key point of intervention by some policymakers. Compute
access through the U.S. National AI Research Resource (NAIRR) and U.K. AI Research
Resource (AIRR) is explicitly intended to address the imbalances discussed above (US
NAIRR 2023). We say more about what additional steps might be taken with compute
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subsidies in Section 3.

Policymakers face a choice between public and private provision of compute access.
Compute credits for existing big cloud providers are easier to immediately admin-
ister, as they do not require establishing new institutions and they leverage private
clouds’ existing expertise. However, they can reinforce the power of the largest cloud
providers. While this can benefit the countries in which these cloud providers are
based—providing them greater control and influence—it may increase vulnerabilities
for other countries. This choice is therefore especially stark for countries that are not
the U.S. or China.

Imposing export controls

Over the past several years, some countries have imposed export controls on semi-
conductors and semiconductor manufacturing equipment, to slow the technological
advancement of their geopolitical adversaries (and especially their military capabilities)
by denying them access to the most advanced forms of compute (Fedasiuk, Elmgren,
and Lu 2022). For example, the October 7, 2022, U.S. chip export restrictions (US BIS
2022b) prohibited the sale of the chips most relevant to AI to Chinese organizations,
and enforced stringent controls on advanced semiconductor manufacturing equipment
and software essential for creating cutting-edge chips to impede China’s ability to
independently produce competitive (AI) chips (Gregory C. Allen 2022). The U.S.
updated these restrictions on October 17, 2023 (US BIS 2023).

The scope of this “small yard, high fence” approach (The White House 2022) is
particularly focused on the AI chips used in data centers and excludes consumer
devices, such as gaming chips. By focusing on these specific characteristics, U.S. export
restrictions intend to regulate AI data center compute to prevent misuse by foreign
actors while avoiding unnecessarily impeding other uses of computing hardware (such
as gaming).22 However, the increasing power of consumer chips could enable them to
be used for purposes that the controls aimed to prevent.23

Restricting compute access for specific actors might be a key method for utilizing
compute to avert harm and encourage adherence to certain norms. However, this
approach comes with drawbacks, such as exacerbating geopolitical tensions and
intensifying economic incentives for domestic compute producers, curbing potentially
advantageous applications in the affected regions, and centralizing power among
nations and organizations with compute access. In Section 4, we examine these
drawbacks of broad technology denial and advocate for further research into more

22For example, the rule includes exceptions to the export controls for consumer-grade chips (US BIS
2022b).

23We discuss some of these drawbacks in more detail in Section 5.
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refined alternatives to these strategies.

Compute-based reporting in the Executive Order

The Biden-Harris Administration’s Executive Order 14110 issued on October 30, 2023,
“Ensuring the Safe, Secure, and Trustworthy Development and Use of Artificial Intel-
ligence,” introduces a range of AI governance measures. Significantly, Section 4 of
this order leverages computational power as a criterion for classifying AI systems that
warrant additional scrutiny due to potential safety and security concerns (The White
House 2023).

Previously, only AI companies knew the specifics of their frontier training runs, in-
cluding the details of their models and the measures taken to ensure their security.
The U.S. government typically became aware of new advanced models only after their
public announcement, often leaving uncertainties about the associated risks. The new
executive order mandates U.S. AI companies to proactively notify the government
about any ongoing or planned activities concerning the training, development, or
production of frontier models. It also requires these companies to share the results of
red-team safety tests, and instructs the new AI Safety Institute within the National
Institute of Standards and Technology (NIST) to develop evaluation standards. These
requirements apply to foundation models trained with more than 1026 operations,
or 1023 operations for models trained using primarily biological sequence data. This
threshold is designed to capture future developments in AI. At the time of writing, no
publicly known AI model meets the 1026 operations threshold (Epoch 2023), whereas
one model appears to meet the biological sequence data threshold (Maug, O’Gara,
and Besiroglu 2024).

Moreover, Executive Order 14110 includes reporting requirements for large compute
clusters that could potentially be used in such training runs.24 This rule also en-
compasses compute provided as a service (e.g., cloud computing), if a foreign entity
accesses compute resources above the mentioned training compute threshold and if
trained on a cluster that meets the previous definition. This Know-Your-Customer
provision had already been proposed to patch a potential loophole of the previously
mentioned October 7 2022 U.S. chip export controls (Egan and Heim 2023; Whittle-
stone et al. 2023; Fist, Heim, and Schneider 2023; Heim and Egan 2023). We discuss
extensions and related options in Section 4.A.

24The computing cluster needs to meet an aggregated computing performance of more than 1020
operations per second, a transitive connection of more than than 100 Gbit/s, and be housed in a single
data center. The requirements include reporting “acquisition, development, or possession, including
the existence and location of these clusters and the amount of total computing power available in each
cluster” (The White House 2023).
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Figure 4: Training compute used for notable ML models has been doubling every
six months since the emergence of the Deep Learning Era. Executive Order 14110
introduced a notification requirement for models trained with more than 1026 operations
(and 1023 operations if trained on using primarily biological sequence data).

Emerging concerns with compute governance

Concerns about compute governance have grown alongside these new compute gov-
ernance efforts and proposals. This further emphasizes the need for greater under-
standing of the role of compute in AI development and a balanced appraisal of the
promises and perils of AI governance.
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Responses to export controls on semiconductors have been mixed. A number of
commentators have noted risks to the economic interests of the United States and its
allies (Feng 2022), who generally benefit greatly from trade with export control targets
like China. Compute manufacturers are among the most critical, often emphasizing
their dependence on China for supplies for the same chips subject to recent export
controls (Ting-Fang 2023; Goswami 2023). China has indeed imposed retaliatory
export controls on raw materials needed for chipmaking (He 2023). There are also
reports of China amassing chip-making equipment and materials ahead of anticipated
controls (Pan 2023). Others worry that the U.S. imposed the export controls too early,
and that keeping China reliant on supply chains dominated by democracies would
have been more prudent (Scharre 2023). The recent advances in Chinese chipmaking
capacity, such as the fabrication of a 7nm chip25 for Huawei phones (Liu 2023) have
increased concerns about the controls accelerating China’s progress towards AI chip
supply chain independence and thus diminishing U.S. capacity to control access to
compute. However, others point out that China was already working towards such
independence long before the October 2022 export controls (Gregory C. Allen 2023).
There are also serious doubts about whether the export controls are being effectively
targeted and enforced (Patel, Ahmad, and Xie 2023).

Other specific compute governance proposals have attracted similar controversy. For
example, one prominent idea for regulating frontier AI systems is to require a license
to access a large amount of AI compute or use large amounts of AI compute for specific
purposes (Anderljung, Barnhart, et al. 2023; Smith 2023). This idea is intended to
enable a more anticipatory approach to governing the development of the highest-risk
AI systems. A number of objections have been raised to this cluster of ideas, including
the possibility of licensing creating barriers to competition, centralization of power, or
opportunities for regulatory capture (Thierer 2023; Howard 2023). More prosaically,
barriers to trade in compute and AI could slow growth in one of the most promising
economic sectors, which has historically benefited enormously from low barriers to
entry, competition, and trade (Feng 2022; Thierer 2014).

Numerous proposals remain untested in real-world scenarios, and the manner of
their implementation could significantly impact their effectiveness. For instance, if
strategically and commercially vital compute information is disclosed to regulators
(as stipulated in the executive order), it may become a prime target for espionage.
Consequently, the diligence and security applied to managing this information could
play a crucial role.

Using training compute-based thresholds as the sole foundation for policy has also
prompted concern. One reason is that training compute usage is only a high-level
proxy for a model’s capabilities; it alone does not provide a comprehensive assessment.

25The meaning and significance of the 7nm designation are explained in Section 3.B.
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As the science of AI risk assessment advances, higher-fidelity measurements of AI
capabilities could become possible. In turn, these capability measurements can enable
better-targeted policies (Shevlane, Farquhar, et al. 2023; OpenAI 2023). Other issues
include, for example, the necessity of changing the compute thresholds over time as
algorithmic and hardware progress occur (Pilz, Heim, and N. Brown 2023), and the
possibility of unforeseen low-compute enhancements that drastically change an AI
system’s capabilities (Bommasani 2023).

We encourage readers to keep these possible risks and limitations of compute gov-
ernance in mind when evaluating compute governance proposals. We do our best
to acknowledge them when they apply, and also discuss recurring genres of risks
and limitations in Section 5.A. In Section 5.B, we discuss guardrails that could be
included in compute governance proposals to reduce their risks. These concerns also
highlight the need to be thoughtful and flexible in compute governance design and
implementation: poor execution of compute governance carries serious risks that
could destroy much of the promise compute governance holds.
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3 Why Compute Governance Is Attractive
for Policymaking

In this section, we note two reasons why compute is an appealing lever for AI gover-
nance. First, compute plays a crucial role in developing and deploying cutting-edge AI
systems. All else equal, the amount of compute used is one of the most reliable indica-
tors of the potential impact of a system, during both development and deployment.
AI systems consistently develop more sophisticated capabilities as more computing
power is used to train them.26 Because of this, the amount of compute used to train
frontier systems has rapidly increased over the last decade, and now often costs tens
of millions of dollars (Cottier 2023). After training, the impacts of a model correlate
with how widely it is deployed;27 some frontier AI systems are deployed to millions
of users, which also requires a large amount of compute.28 Therefore, identifying
and regulating the use of large amounts of compute has the potential to significantly
influence the impacts of AI.

Second, governing compute is technologically feasible: it seems possible for society
to monitor and restrict the computational resources used to develop and deploy AI,
should it choose to do so. This is a consequence of four features of compute that other
inputs to AI progress don’t share: detectability, excludability, quantifiability, and
supply chain concentration (Figure 7). Computing hardware is a rivalrous physical
good that can be identified, counted, and tracked; this is made easier by the fact that
the supply chains used to produce it have several key bottlenecks. By contrast, many
other inputs and outputs (including training data, algorithms, and trained models) are
easily shareable, non-rivalrous intangible goods. Additionally, computing hardware
can be quantified in relatively objective ways (e.g., technical features like operations
per second, communication bandwidth, and memory), allowing quantification of the
overall compute used to develop an AI system. Almost all other inputs (in particular,
human capital) are much harder to quantify. For a summary of our comparison, see
Figure 9.

The rest of this section defends these two main claims, which provide a foundation
for our investigation of possible approaches to compute governance in later sections.
These two claims also suggest an analogy between compute and uranium in the context

26As predicted by “scaling laws,” described in more detail later in this section.
27This is not a simple linear relationship: some inferences will be significantly more impactful than

others.
28While widespread deployment requires a large amount of compute in total, it does not necessarily

require a large amount of centrally owned compute—for example, after a model’s weights are released
publicly, it can be downloaded and run independently by many individuals.
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of nuclear governance; Appendix A explores this analogy further.

3.A The Importance of Compute for Frontier Models

Compute is a particularly key input for frontier models, which frequently introduce
new AI capabilities. Compute constitutes a large fraction of the costs of frontier AI
labs, due to the enormous amounts used (Knight 2023; UK DSIT 2023; UK CMA 2023).
The compute used to train notable machine learning systems has doubled roughly
every six months on average, growing by a factor of 350 million over the last 13 years
(Figure 5a) (Epoch 2023).29. This increase cannot be explained by the increasing
price-performance ratio of GPUs, which has followed a slower pace, doubling roughly
every two to two and a half years (Hobbhahn, Heim, and Aydos 2023; Hobbhahn and
Besiroglu 2022). Instead, the six-month doubling pace seems to be sustained by the
expensive use of ever-larger compute clusters with more chips, enabled by increased
investment (Cottier 2023). One consequence of the high demand for compute is
scarcity: even companies with multibillion-dollar budgets must wait months or years
to have large compute orders fulfilled.

AI developers are not using massive amounts of compute for frivolous reasons: in-
vestments in compute have reliably delivered capability improvements (Owen 2024).
In his influential essay “The Bitter Lesson,” (Sutton 2019) AI pioneer Rich Sutton
observed that, historically, AI researchers tried to hand-design knowledge into their
systems. This approach led to short-term progress. Sutton argued that, since the
1950s and more evidently since 2010, breakthroughs in AI have more often come from
an alternative approach that relies on scaling compute with simple algorithms that
can effectively use this increased compute. This approach relies on machine learning
to “figure out” the knowledge that humans had previously been “hard-coding” into
machines. Furthermore, with more available compute, researchers can also run more
experiments to validate algorithmic ideas.

In addition to these anecdotal and qualitative observations of compute-intensive
frontier systems, the relationship has been investigated quantitatively through the study
of “scaling laws,” which describe how the performance of a particular AI model scales
with respect to the model’s inputs for a given architecture and algorithm (Figure 6).

29According to Epoch’s data, the doubling time between 2010 and March 2023 was 5.6 months. They
define “notable machine learning systems” as follows: “All models in our dataset are mainly chosen
from papers that meet a series of necessary criteria (has an explicit learning component, showcases
experimental results, and advances the state-of-the-art) and at least one notability criterion (>1000
citations, historical importance, important SotA advance, or deployed in a notable context). For new
models (from 2020 onward), it is harder to assess these criteria, so we fall back to a subjective selection.”
(Sevilla, Heim, A. Ho, et al. 2022)
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Figure 5: The importance of compute AI in a historical context. (Data from Epoch
(2023) and Sevilla, Heim, A. Ho, et al. (2022).)

The relationship between AI performance and model size, data, and training compute
has tended to follow a power law, with fundamental measures of performance30

continuing to improve smoothly as these variables increase. These laws have been
instrumental in understanding and predicting performance improvements (Villalobos
2023; Kaplan et al. 2020; Hoffmann et al. 2022). However, while scaling laws predict
system performance on training objectives, they are not always reliable predictors

30For language systems, performance is typically measured as the cross-entropy loss on the next-word
prediction task.
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Figure 5: The importance of compute AI in a historical context. (Data from Epoch
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of performance improvements on individual downstream task performance, which
can be sudden and unexpected (Ganguli et al. 2022; Wei et al. 2022).31 Not only
are scaling laws a way of quantifying Sutton’s “Bitter Lesson”, but they also show

31These results have been called into question, noting that the suddenness is partly a result of how
performance being assessed with discontinuous measures, such as getting a math question exactly right,
without giving points for getting close to the right answer (Schaeffer, Miranda, and Koyejo 2023).
However, others have responded that performance on discontinuous measures is crucial for real-world
impact and that continuous “surrogate measures” meant to predict performance on discontinuous
measures are difficult to identify ahead of time (Wei 2023).
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the importance of algorithmic innovations: better neural network architectures and
training algorithms exhibit steeper scaling laws.
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Figure 6: Scaling laws indicate that a fundamental measure of performance
decreases as compute, dataset size, and parameters increase. Reproduced from
Kaplan et al. (2020). Note that subsequent research by Hoffmann et al. (2022) has found
that the scaling laws in question are differently shaped, though this did not change the
general conclusion that there are strong returns to scale.

Compute is essential not only for training AI models, but also for deploying and
operating them. Just as operating expenses outpace initial fixed costs for many large-
scale projects, the majority of available AI compute resources are used for operating AI
models rather than training them.32 Frontier AI models are so large that they cannot
be efficiently operated at large-scale with household amounts of typical consumer
hardware. Instead, for models in high demand, inference requires thousands of AI
chips housed in specialized data centers to adequately serve the needs of thousands of
users (Pilz and Heim 2023). The wider the deployment of AI systems (which requires
more compute), the more impact they will likely have (both beneficial and harmful).33

32For example, Google estimated that 15% of its global energy use went toward machine learning
workloads, of which 60% was for inference in 2019, 2020, and 2021 (Patterson, Gonzalez, Hölzle,
et al. 2022). NVIDIA estimated 80% to 90%, and AWS estimated that 90% of its workload is inference
(Patterson, Gonzalez, Le, et al. 2021). The computational needs for running a single copy of a trained
model (inference) are significantly lower than that needed for training it—perhaps only a few dozen
chips. However, the majority of computational power for AI systems may not necessarily be used for
training runs. Countless everyday actions, such as chatbot interactions (e.g., ChatGPT), Google searches,
or inquiries to virtual personal assistants like Siri or Alexa, generate outputs from a model via inference.
As consumer AI usage increases, the share of compute used for inference may increase even further.

33However, there are many caveats to this correlation. The impact could vary significantly based on the
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The recent rise of large language models also helps illustrate compute’s centrality to
creating and governing frontier AI models. Computing hardware has been the key
factor in affecting who is able to build cutting-edge large language models (Bommasani
et al. 2022; Ganguli et al. 2022; Tamkin et al. 2021). Google and OpenAI were early
investors in large-scale AI training runs, and consequently played a significant role in
the early development of language model research and norm development (Devlin
et al. 2019; Shevlane and Dafoe 2020; Seger, Ovadya, et al. 2023). Compute has
thus become the de facto “currency” of access to large language models; many AI
companies charge for outputs on a per-token basis, which aims to account for the
compute used for inference.34 Access to compute also influenced the speed with which
capabilities diffused throughout the broader AI research ecosystem: the first actors
to replicate GPT-3 were relatively “compute-rich” actors or had received large grants
from such actors (Cottier 2022a).

3.B The Feasibility of Compute Governance

Several properties of AI compute suggest it can serve as an effective governance
instrument. We focus on four: detectability, excludability, quantifiability, and supply
chain concentration.

3.B.1 Detectability

The physicality and resource intensity of AI supercomputers makes them highly de-
tectable and thereby governable.35 AI supercomputers consist of tens of thousands of
AI chips connected with high-bandwidth networking equipment and consume up to
dozens of megawatts of power—equivalent to tens of thousands of U.S. households.36

They are hosted in large data centers—industrial facilities spanning the equivalent of

application domain and other factors. Some inferences, or even certain users, could pose considerably
higher risks than others. Hence, the relationship between deployment compute and the impact of AI
systems is not as clear-cut as that observed in the context of training compute and AI capabilities.

34Tokens from larger models are typically more expensive than tokens from smaller models, reflecting
their higher cost to produce and higher quality. However, there are numerous techniques by which
more tokens from smaller models can be used to match the performance of fewer tokens from larger
models—for example, running many copies of a large language model (LLM) in parallel to generate many
candidate options and then choosing between them can improve performance (Jones 2021; Villalobos
and Atkinson 2023).

35This detectability might be undermined should decentralized training, spread across many data
centers and/or using lower-quality compute, become more viable. We discuss this more in Section 5.A.

36For example, AWS recently announced an AI supercomputer consisting of 20,000 H100 chips (NVIDIA
2023). Given 10.2 kW of power consumption per 8-chip DGX system (NVIDIA 2024a), this cluster would
consume more than 25 MW, even before accounting for networking, storage, and cooling.
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Properties That Make Compute Attractive for Policymaking

Quantifiability
Computational power can be 
easily measured, reported, 
and verified.

Excludability
The physical nature of 
hardware makes it possible to 
exclude users from accessing 
AI chips. In contrast, 
restricting access to data, 
algorithms, or trained models 
is much more difficult.

Supply chain 
concentration
AI chips are produced via a 
highly inelastic and complex 
supply chain, several key 
steps of which (e.g. design, 
EUV lithography, and 
fabrication) are dominated by 
a small number of actors.

Detectability
Large-scale AI training and 
deployment is highly resource 
intensive, often requiring 
thousands of specialized chips 
in a high-performance cluster 
hosted in a large data center 
consuming large amounts  
of power.

Figure 7: The feasibility of compute governance is underpinned by four properties:
detectability, quantifiability, excludability, and supply chain concentration.

up to several football fields—that require large-scale cooling and power infrastructure
( Figure 8) (Pilz and Heim 2023). The construction of such a facility costs up to several
billion dollars and involves a complex permitting and power allocation process.37 The
visibility of supercomputer use has also been used to quantify the climate impact of
modern AI systems (OECD 2022; Patterson, Gonzalez, Hölzle, et al. 2022; Patterson,
Gonzalez, Le, et al. 2021; Henderson et al. 2020).

However, there are also challenges to detecting AI training runs by tracking data
centers. While most data centers are likely easy to identify on geospatial imagery,
some may be concealed underground38 or hidden within other industrial facilities.
Furthermore, even successfully detecting AI data centers is not sufficient for identifying
AI models hosted on those data centers. This would require the data center owners to
monitor and report information about how their computers are used—-which would
raise privacy concerns—-and to distinguish AI workloads from the non-AI workloads
also hosted by the majority of data centers.

3.B.2 Excludability

Compute has a high degree of excludability and rivalry, key attributes of a private
good (as distinct from a public good (Samuelson 1954)). Unauthorized users can be

37Bach (2023) describes a large Microsoft data center in Iowa of the type used to train GPT-4. Like
most data centers of hyperscalers, it likely had a power capacity of above 100 MW (Pilz and Heim 2023).
Pilz and Heim (ibid.) estimate that only around 140 data centers of this size class existed in 2023.

38For instance, see Steers (2022) for a compilation of underground data centers. However, this has yet
to be demonstrated for AI supercomputers.
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Figure 8: Internal and external views of a data center (from Google (2024a).

easily excluded from accessing AI chips. Someone wishing to use AI chips—i.e., run
desired computations on them—must either possess the chips themselves, or (more
commonly) rent the right to use the chips from a cloud compute provider that is in
possession of the chips themselves (Pilz and Heim 2023). In both scenarios, the entity
in possession of a chip generally maintains the ability to prevent others from using
it.39 While hackers can theoretically gain access to and exploit an actor’s compute,
they can easily be expelled once their intrusion is detected.40 Therefore, compute can
be allocated or withheld from actors or particular use cases.

The excludability and rivalry of compute can perhaps best be understood in contrast
to the two other elements of the AI triad: data and algorithms (Buchanan 2020). Both
are intangible. Data and algorithms can be kept private prior to publication, but once
published it is difficult to control their use (Arrow 1996), and they become “digital
public goods” with low excludability and rivalry (Gruen 2017). This has been referred
to as the “copy problem” (Trask et al. 2020). Once a paper has been downloaded
from the website hosting it, it can be copied and reshared virtually costlessly, even if
we remove the original copy from the original host website. By contrast, computing
hardware has a finite throughput: if one actor is using some computing power, another
actor cannot use that same computing power at the same time.

To prevent the unsanctioned copying of data or ideas, society primarily relies on

39Users send instructions to the chip (i.e., directions about which computations to run) via physical
networking infrastructure. The person in possession of the chip will naturally have the right and ability
to determine and configure the networking connected to that chip, and therefore control the process by
which users can send instructions to the chip to make use of it. Crudely, the person in possession of the
chip could exclude others by simply disconnecting it from the networking or power supply. Of course,
more nuanced, computational methods of control at the network access level are generally used.

40Intrusion detection could be achieved by monitoring energy and compute usage.
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institutional tools (e.g., intellectual property rights, contracts, criminal law). However,
these policies are far from perfectly effective, especially across jurisdictional borders.
The ability to reliably exclude people from accessing these informational goods is much
weaker than for physical goods, as evidenced by, for example, the history of nuclear
technology, discussed further in Appendix A.41 The U.S. government’s unsuccessful
attempts in the 1970s to restrict access to the RSA encryption algorithm serve as an apt
example of the challenges inherent in governing algorithms.42 The risk of cybertheft
of organizational internal assets increases the difficulty of regulating algorithms. Thus,
the control and tracking of AI capabilities by monitoring where certain AI algorithms
are used or whether some actor is using a particular algorithm becomes a complex
task.43

3.B.3 Quantifiability

The computing power attainable from hardware is also easily quantified. It is generally
easier to regulate behavior when it is quantifiable—when we can more precisely
measure some activity, it is easier to identify it and promote, limit, or deter it.

Computational resources can be quantified by the quantity and quality of their chips.44

Most prosaically, chips can be counted. Chips also possess measurable specifications—
such as computational performance (in operations/s),45 chip-to-chip communication

41In particular, one worry is that rules excluding persons from informational goods in AI will disadvan-
tage law-abiding and/or domestic actors, while law-breaking or foreign actors may be undeterred by
laws intended to constrain access to information.

42Discussed in Fischer et al. (2021), and Appendix A.
43Nonetheless, we expect that frontier AI organizations will become more reserved about their employed

algorithms than they have been in the past. Compare GPT-2 (Radford et al. 2019) with GPT-4 (OpenAI
et al. 2023). This will influence the diffusion of AI algorithms into the research community.

44This section discusses quantifiability in terms of computational infrastructure, focusing on metrics
related to hardware capabilities such as computational performance. Compute can also be used to
quantify AI systems, specifically through the amount of training compute they’ve utilized. These two
forms of quantification serve distinct, yet occasionally intersecting, regulatory purposes. While this
second type—quantifying AI systems based on training compute—is a standalone criterion that can be
applied to subject these systems to particular regulations (that do not leverage compute), the first type
concentrates on the hardware’s capabilities and is important for the governance of compute. Moreover,
these two metrics can be employed in a complementary manner. Knowing the specifications of an AI
compute cluster allows one to determine whether a particular cluster is capable of training a system with
given compute requirements. Additionally, the hardware can be leveraged to verify adherence to these
thresholds. While there are measures to quantify training compute, these are not yet fully standardized
(Sevilla, Heim, Hobbhahn, et al. 2022; Brundage, Avin, J. Wang, et al. 2020).

45As previously stated, this paper primarily discusses the metric of “operations per second” when
evaluating the computational performance of AI chips. This differs from the more commonly cited
“floating point operations per second.” The focus on “operations per second” is intended to provide
a more holistic measurement, especially in the context of recent advancements in AI training that
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bandwidth, memory capacity,46 and memory bandwidth—that indicate quality. Further,
training and deploying advanced AI models typically involves tens of thousands of
advanced AI chips, requiring significant amounts of ancillary infrastructure—such
as high-speed networking and cooling and energy infrastructure—housed in large-
scale data centers. This infrastructure can be used to estimate actors’ computational
resources, as well as to verify and set clear thresholds on access.47

The quantifiability of compute contrasts strongly with another input to AI progress:
human capital or “talent.” Individuals are not as transparent as compute or data
(Belfield and Hua 2022). The governance of talent is rightly limited by civil liberties
like privacy, and freedom of association and thought (outside of specific and sometimes
contentious cases, such as subsidizing research and education and granting or denying
student and work visas).48 Quantifying and comparing talent directly is difficult,
making it a less useful indicator of AI capabilities. For example, while some metrics
can be predictive of the high productivity of some scientists over others (e.g., h-index,
or citation counts), such measures have significant limitations (e.g., they are field
dependent or favor older researchers).49

3.B.4 Supply Chain Concentration

A key factor enhancing the detectability, excludability, and quantifiability of compute
is the concentration of the global supply chain for high-end (≤ 7 nm)50 chips. The
large majority of the world’s most advanced AI chips are manufactured by a single

increasingly utilize lower precision training methods.
46The memory is not always part of the chip. However, in the case of cutting-edge chips that leverage

high-bandwidth memory, they are part of the same chip packaging.
47We expand on these sorts of mechanisms in Section 4.
48Note that talent can itself be a means of governance even if it’s not the best target of governance. AI

researchers and engineers can choose to limit access to their talent. There have been cases of workplace
activism within the AI community, deterring their employers from working on certain projects. A notable
instance is the protest by Google employees against Project Maven, leading Google to retract from
the defense contract (Belfield 2020). Moreover, a 2019 survey indicated a considerable number of AI
researchers would likely participate in workplace activism if asked to work on projects they object to
(B. Zhang et al. 2021).

49See Clancy (2022) for a discussion of the benefits and limitations of citation counts as a scientific
metric.

50In chip manufacturing, each generation of chipmaking technology has a designated “process node”
or “technology node,” measured in nanometers, with smaller nodes being more advanced. Historically,
this nomenclature referred to the minimum size of actual features on a chip (smaller features meaning
more features could be packed on a chip) (Semiconductor Industry Association 2003). However, this
nomenclature no longer actually corresponds to the physical feature sizes (S. K. Moore 2020), though
smaller node sizes continue to correspond to more advanced chipmaking capabilities.
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Comparing the Inputs and Outputs of the AI Training Process
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Figure 9: Comparing the four properties of the key inputs and outputs of the AI
training process. Compute scores highly on all four properties, suggesting that compute
governance may be feasible, and perhaps more effective than governance of other inputs
or outputs.

company (TSMC),51 which is critically reliant on extreme ultraviolet (EUV) lithography
machines, also only manufactured by a single company (ASML) (Patel 2023; Tarasov
2022).52 Several other links in the supply chain are also dominated by a few providers,
including data center GPU design (where NVIDIA has a market share of over 90% (UK
CMA 2021; Nellis, Mehta, and Mehta 2023)), and cloud compute services (dominated
by a few large providers (OFCOM 2023)). The supply chain is also inelastic, as the
entry barriers are high and supply is difficult to increase quickly (ibid.).53 This is
especially evident for EUV lithography machines, which took multiple decades and
billions of dollars in investments to develop (C. Miller 2022). These empirical factors
regarding the supply chain could change over time, potentially affecting governability,
but examples like the U.S. export controls on semiconductor manufacturing equipment
(discussed below) illustrate the existing potential for governance today. Figure 10
illustrates the compute supply chain, whereas Figure 11 focuses on its concentration.

51In 2020, TSMC dominated approximately 90% of the pure-play foundry market (i.e., manufacturing
capacity dedicated to serving external customers) for technology nodes of 10 nm and below, with Samsung
accounting for the remaining 10% (C. Hwang 2022; Hille 2021). When considering all technology nodes,
TSMC and Samsung together constituted 74.3% of the market share in the pure-play foundry category
(Chiao and Chung 2023).

52However, some argue that substitutes for EUV could potentially be used to produce high-end chips,
though at a significant efficiency penalty (Patel 2023).

53Competition authorities have been exploring the possibility of increasing competition in these markets
(UK CMA 2022; OFCOM 2023; US FTC 2021).
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It is not feasible to regulate every instance of AI model deployment, nor is it desirable
(as discussed in Section 5.A). Today, however, a significant fraction of frontier AI
model-related development and deployment compute could be regulated and governed
because it is hosted in a relatively small number of data centers housing large numbers
of AI chips (Pilz and Heim 2023).54

The Compute Supply Chain
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Figure 10: An overview of the AI compute supply chain. First, chips are produced
through a process of design, fabrication, and testing. They are then distributed and
accumulated in data centers. Compute users—such as AI developers—can then train and
run AI systems from these AI supercomputers.

3.C Regulating Development Versus Regulating Deployment

The arguments above outline why compute governance is a promising approach to
governing the development of AI. However, they don’t establish that it’s necessary to
reliably prevent major harms from AI. It could be that other approaches to AI gover-
nance could achieve similar outcomes—in particular via focusing on the deployment

54While we expect a large amount of edge compute used for inference (such as inference-optimized
chips in smartphones), we do not expect them to be suited for training or executing the most powerful
AI models, which require high-bandwidth interconnected compute including high network connectivity
to serve users. We also don’t expect that a single actor can control most inference edge compute given
the strong decentralized nature of these devices.
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This excludes AI chips that are not available to 
purchase, for instance AI chips that are only 
available “to rent”, such as Google’s TPUs.

Information on the production volume and revenue 
of such custom chips is limited. However, we 
estimate that Google’s TPUs could make up a 
significant minority of all AI chips. 

NVIDIA
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Others (Mostly Intel & AMD) • 5-20%

Design of AI Chips
Data: 2023.

Concentration of the AI Chip Supply Chain
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This covers the entire cloud market and is not 
specific to AI compute. However, we expect that 
these three companies have a similar, or even 
bigger, market share in the AI cloud compute sector.

Amazon Web

Services

32%

Microsoft Azure • 22%

Others • 35%

Google Cloud • 11%

Compute Provision
Data: 2023.

Fabrication
Data: 2022. Logic chips ≤7nm.

TSMC

90%

Samsung & Intel • 10%

It is ambiguous whether market share figures 
exclusively cover the pure-play foundry market, i.e., 
manufacturing capacity dedicated to serving 
external customers, or if it also includes capacity for 
chips that are used for their own products. 
However, even when accounting for this, TSMC 
would likely still dominate the market by a large 
margin, and the production is still limited to a small 
number of actors.

ASML is the only company capable of producing 
EUV machines. These machines are critical to 
produce <5 nm chips and to produce 5 nm chips 
economically (Grunewald, 2023). In 2023, they 
were also used to produce almost all 7 nm chips, 
with the exception of Chinese manufacturer SMIC 
who in 2023 began producing 7nm chips with 
inferior DUV equipment due to export restrictions 
on EUV (Schleich and Reinsch, 2023). 
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Figure 11: The supply chain for AI chips is highly concentrated. Several critical
steps—including AI chip design and production—have fewer than three suppliers. Even
AI development at the frontier consists of only tens of organizations. These facts enhance
the governability of the compute supply chain–and how difficult it is to compete at the
cutting edge of chip production (Nellis, Mehta, and Mehta 2023; Morgan 2024; Das
2023; Tarasov 2022; Grunewald 2023; Schleich and Reinsch 2023; C. Hwang 2022;
Richter 2023; OFCOM 2023).

of AI systems. In most other sectors, regulation focuses on restricting harmful use of
products, e.g., by restricting the sale of products that fail to meet specifications, or by
holding manufacturers liable for harms caused by their products.
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We expect that regulation of AI deployment will be a part of any frontier AI regulatory
regime. However, we argue that without regulations on the development of AI,
regulation on AI deployment would not be adequate to protect against the most
severe risks from AI, due to (at least) two key shortcomings (Heim 2023a; Anderljung,
Barnhart, et al. 2023; Kolt 2023; Matheny 2023).

First, it will be very difficult to identify all relevant deployments of any given model
with high reliability. Individual copies of a model can be run using a relatively small
amount of compute, making it extremely difficult to detect which computers they’re
being run on. Copies can also easily be distributed to many different actors—for
example, via sharing the weights online. Even models whose weights aren’t released
publicly, such as GPT-4, could be stolen via hacking or insider espionage, then deployed
by the attackers (Ladish and Heim 2022; Cottier 2022b; Nevo et al. 2023; Anderljung,
Barnhart, et al. 2023). Those attackers may be criminal enterprises or state adversaries,
who are difficult to monitor and who would be less constrained by legal penalties
placed on them (Anderljung and Hazell 2023; Anderljung, Barnhart, et al. 2023).

Second, some models may pose risks that are disproportionate to the scale or sensitivity
of the tasks for which they’re deployed. Regulators could aim to detect only partic-
ularly sensitive deployments of models, like models that are given access to critical
infrastructure; or they could target particularly wide deployments of models. But if
the effects of a model’s actions ripple beyond its immediate deployment environment,
then they still may pose large-scale risks. For example, in the context of biosecurity, if
a model is used to design novel pathogens, those designs could easily be shared very
widely (Berke 2023). Similarly, models highly capable at understanding computer
systems might be used to design highly-sophisticated computer viruses that proliferate
across the internet (UK DSIT 2023). Future models may also develop the capability to
autonomously pursue unintended goals (Berglund et al. 2023; Shevlane, Farquhar,
et al. 2023; Ngo, L. Chan, and Mindermann 2023; Cotra 2022). These capabilities
might allow a model to spread itself like a computer worm, hacking and spreading
through networks and causing severe disruption (Carlsmith 2022). Risks like these
could arise even when models are deployed internally within AI companies, without
any external deployments; indeed, they may be more severe in those cases, since if
security precautions are not taken, it could be easier for internally-deployed models to
access private code and data (including their own weights).

Regulations on the deployment of frontier models must therefore be supplemented by
regulation of the development of those models (Anderljung, Barnhart, et al. 2023).
One method of detecting and monitoring development would involve tracking the
inputs necessary for this process; for the reasons given above, compute is likely the
most feasible such input.55 An “upstream” approach can provide more assurance

55Governance of inputs to a technology is already done in cases where the consequences of misuse or

32



than governance focused solely on AI systems and applications themselves. It also
allows us to ensure that sufficient beneficial and defensive applications of AI are
produced, by steering inputs toward such applications (Kolt 2023), as discussed
further in Section 4.B.

accident are severe. For instance, the Chemical Weapons Convention regulates the production, use, and
stockpiling of specific chemicals (and precursors thereof) that can be used to create chemical weapons
(OPCW 2023). For similar reasons, access to and sale of nuclear materials is regulated. Misusable AI
systems, by analogy, can exploit vast attack surfaces, result in extreme and widespread harms, and be
difficult or impossible to reverse thereafter (Anderljung and Hazell 2023).
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4 Compute Can Enhance Three AI
Governance Capacities

The arguments in Section 3 give us reasons to further explore governing AI via
compute.

In this section, we argue that compute can be used to improve society’s capacity to
govern AI in at least three key ways:56 increasing the visibility of AI to policymakers,
allocating AI capabilities, and enhancing enforcement of norms and laws. We provide
illustrative examples of how these capacities can be used for AI governance.57

Visibility refers to the ability to understand how actors use, develop, and deploy AI,
and which actors are most relevant to frontier AI model development and (to a lesser
extent58) deployment. This visibility is crucial: it allows policymakers to anticipate
problems, make more accurate decisions, track key outcomes within a country, and
negotiate and implement agreements between countries—e.g., new international
institutions for governing AI (L. Ho et al. 2023), treaties, or more informal confidence-
building measures (Shoker et al. 2023).

Allocation refers to the ability to direct and influence the trajectory of AI development
by changing the distribution of AI capabilities among different actors and projects. For
example, a government may want to steer AI development (e.g., to correct for market

56One can view each area as a governance “capacity” that contributes to effective governance. This is
analogous to the concept of state capacity (Luciana 2013).

57We are not aware of a standard such taxonomy, though there is related work. Here we use a
bespoke taxonomy, which we arrived at via trial and error in organizing several compute-related policy
mechanisms. We were particularly inspired by Elinor Ostrom’s work on commons management in
emphasizing visibility and enforcement (Ostrom 2015), and by the idea of differential technological
development (J. Sandbrink et al. 2022) in emphasizing the importance of allocation. We also recognize
that these categories overlap and interact with each other. For example, withholding compute from
an actor that violates norms could be seen as using the allocation capacity to enhance enforcement.
Similarly, the visibility capacity can help regulators detect whether allocation goals are being achieved,
or where possible enforcement might be warranted.

58This is because, while inference costs across all users are generally many multiples of training costs,
an individual user may be able to perform large amounts of inference using much less compute than
required for training (see Section 2.A). Furthermore, it is often possible to compress, distill, or otherwise
optimize large models so that they can run on a wider variety of hardware than would be suitable
for training (Apple 2022; Cuenca 2023). Computationally cheap post-training interventions can also
meaningfully change model behavior, including by making it less safe (Gade et al. 2023). Thus, compute
governance will be less effective at governing small deployments, especially when model weights are
readily available (e.g., due to model release) (Anderljung, Barnhart, et al. 2023; Seger, Ovadya, et al.
2023). Nevertheless, compute governance can still play an important role in detecting which individual
actors have and/or use the largest inference capacities, which may correlate with various risks and
opportunities, as discussed in Section 3.B.
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failures) toward beneficial and defensive uses, disincentivizing harmful and malicious
ones, increasing the fraction of public interest-oriented AI development, or expanding
access to AI capabilities.

Enforcement refers to the ability to respond to violations of norms or laws related
to AI, such as reckless development and deployment that violates established safety
requirements, or deliberately malicious uses of the technology. In the context of AI
governance broadly, enforcement can occur through mechanisms like the legal system,
informal social norms, industry self-regulation, or other procedures.

In each area, taking compute seriously can open up new policy options. To illustrate
this, we discuss several policy ideas in each of the three categories. These ideas are
brief and exploratory; more analysis will be needed to gain confidence that they are
feasible and desirable, and to understand how they might interact with each other.
Here we focus primarily on what is possible; we revisit the question of desirability in
Section 5.

Visibility

Using public information about compute 
quantities to estimate actors’ AI capabilities.

Required reporting of training compute 
usage from cloud providers and  
AI developers.

International AI chip registry.

Privacy-preserving workload monitoring.

Allocation

Differentially advancing beneficial  
AI development.

Redistributing AI development across and 
within countries.

Changing the overall pace of AI progress.

Collaborating on a joint AI megaproject.

Enforcement

Enforcing “compute caps” by physical limits 
on chip-to-chip networking.

Hardware-based remote enforcement.

Preventing risky training runs via  
multiparty control.

Digital norm enforcement.

How Intervening on Compute Can Lead to Concrete Risk-Reducing Policies
Capacities

Figure 12: Examples of how intervening on compute can lead to concrete risk-reducing
policies in the areas of visibility, allocation, and enforcement.

4.A Visibility

If effective and proactive governance of advanced AI is to be achieved, policymakers
must have a means of reliably identifying actors developing and deploying advanced AI
systems. They must also be able to measure the properties of those systems themselves.
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Suppose that there is a law mandating safety measures for training frontier AI systems
(Anderljung, Barnhart, et al. 2023). If a firm violates that law, then the application of
legal penalties is only possible if the legal system knows that the violation occurred.
Similarly, to forecast AI advancements, policymakers need insight into the trajectory of
AI capabilities—akin to how the Intergovernmental Panel on Climate Change (IPCC)
forecasts climate scenarios.

On the global stage, visibility is also crucial. Successful international agreements, like
arms control and nonproliferation treaties, often depend on transparent signaling
and verification of compliance, a process laden with social and technical intricacies
(Gallagher 1999).59 The more effectively a state can convey this information, the more
feasible these agreements become.60 Compute governance can offer policymakers
additional tools to enhance regulatory visibility across these different contexts.

In this section, we explore four policy mechanisms that leverage compute to increase
regulatory visibility:

1. Using public information about compute quantities to estimate actors’ AI capa-
bilities (now and in the future)

2. Required reporting of large-scale training compute usage from cloud providers
and AI developers

3. International AI chip registry

4. Privacy-preserving workload monitoring

All attempts to create greater visibility will face common risks, especially if they rely
on nonpublic information. In particular, we highlight the risk that visibility efforts will
violate individuals’ privacy or threaten the security of strategically sensitive information.
We discuss these risks further in Section 5.A, and possible approaches for mitigating
them in Section 5.B.

Using public information about compute quantities to estimate actors’ AI capabili-
ties (now and in the future)

Governments who wish to identify the set of actors that could build the most ca-
pable general-purpose AI systems can first look to existing reporting and open source

59Analogously, this transparent signaling problem is also a key struggle with governing lethal au-
tonomous weapons systems (LAWS): how do you verify autonomy if, from the outside, it behaves and
appears identical to a non-autonomous system (Horowitz and Scharre 2015)?

60Including, for example, selectively conveying relevant information without necessarily sharing other,
possibly sensitive, information. The question of whether information sharing is beneficial is heavily
contextual (see Emery-Xu, Park, and Trager (2023) on knife-edge results).
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intelligence about compute. Building cutting-edge models requires enormous su-
percomputers that house large numbers of specialized chips. Because of this, while
publications from AI companies often do not reveal the exact amount of compute used
in a particular advance, it is usually possible to get a rough sense of which actors
are compute-rich.61 For example, debates on the EU AI Act have noted that it is
mainly U.S. rather than EU companies that are compute-rich (Future of Life Institute
2022). A similar dynamic has been observed in academia and industry, described as
the “compute divide” (Ahmed and Wahed 2020; Besiroglu, Bergerson, et al. 2024).

While leveraging open source intelligence to identify frontier AI developers can help
reduce uncertainty to an extent, this coarse-grained method is insufficient on its own
for high degrees of visibility. A method with more visibility for the U.S. was introduced
in October 2023 by Executive Order 14110 that now requires companies that “acquire,
develop, or possess a potential large-scale computing cluster” to report “the existence
and location of these clusters and the amount of total computing power available in
each cluster” to the U.S. government (The White House 2023).

On the global level, information about compute infrastructure can also be used to
estimate different states’ AI capabilities. Given the size and energy requirements of
data centers required to house AI supercomputers, geospatial intelligence62 could
also be used to evaluate countries’ potential AI capabilities and their compliance with
future international agreements.63

Because compute is an important indicator of novel and general-purpose AI capabilities,
policymakers can also leverage compute information to improve foresight and forecasts
about which actors will be relevant and what AI capabilities might exist in coming
years. This can then help them anticipate and preempt future risks. One can make
initial forecasts about future progress by leveraging scaling laws; trends in compute
growth, allocation, and efficiency; and trends in algorithmic progress and growth
of AI talent (Besiroglu, Heim, and Sevilla 2022). One example of this methodology
attempts to estimate the number of operations required to train an AI model that is
capable of more cost-effectively performing most human-level intellectual labor (Cotra
2020; Davidson 2023; Barnett and Besiroglu 2023).

61For example, researchers outside the AI industry have made estimates of the compute usage of
notable AI systems (Epoch 2023).

62These methods can also be supplanted with classified capabilities to attain visibility over significant
data center construction unaccounted for in open source reporting.

63However, note that the majority of large data centers host general-purpose hardware rather than
AI supercomputers. Geospatial intelligence may thus be insufficient to verify the use or non-use of AI.
Additionally, motivated actors could conceivably implement countermeasures to evade detection, such as
by hiding data centers underground, though doing so would likely significantly increase cost.
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Required reporting of large-scale training compute usage from cloud providers
and AI developers

Knowing the geographic location and ownership of large concentrations of AI chips
can only tell a regulator so much about the usage of that compute. Most data centers
outside of China that can train large AI models are concentrated in the hands of a
few large cloud providers—primarily Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud (Pilz and Heim 2023; Belfield and Hua 2022). Yet the use of these
data centers is largely rented out to paying customers. Most AI development occurs
on rented chips accessed remotely “in the cloud”. Requiring compute providers to
institute “Know Your Customer” (KYC) requirements and report large compute usage
to regulators64 can complement knowledge of the total quantities and ownership
of compute (Egan and Heim 2023). Accurate compute usage data can also help to
evaluate the environmental impact of energy-intensive AI training and deployment
processes. Reporting practices could assist in balancing these environmental costs
against the broader benefits, guiding more sustainable AI development (OECD 2022;
Henderson et al. 2020; Luccioni, Viguier, and Ligozat 2022; Patterson, Gonzalez,
Hölzle, et al. 2022).

Along with other mechanisms, required reporting can also serve as a foundation for
post-incident liability and incident response (see Section 4.B below). If model outputs
can be attributed to a model, then regulators could work with compute providers to
immediately shut down the offending system and identify who was responsible for
deploying the model. Governance practices similar to this are common. For example,
the hosts of malicious websites, such as ones where illegal drugs are sold, often remain
anonymous, and the best available governance intervention is to shut down the servers
hosting these websites. Access and close contact with the host—similar to the role of
the compute providers we are discussing here—can help with prompt action. Strong
procedural guardrails will also be needed to ensure that states use incident response
powers in the public interest.

Policymakers have recently discussed reporting requirements for AI developers as
well. For example, Executive Order 14110 uses training compute thresholds to trigger
additional scrutiny on a potentially risky training run.65 If reporting mechanisms
could eventually be made trustworthy (e.g., with strong information security and
accurate information) and paired with other mechanisms such as external auditing,
then a regulator could gain assurance that no excessively risky frontier AI systems are

64This KYC practice is required in Executive Order 14110 for foreign users of cloud compute (The
White House 2023).

65It places three broad requirements on AI companies: to notify the government before a frontier
training run, to report large data centers and large foreign cloud computing jobs, and to share the results
of safety tests.
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being developed. As a risk-reducing policy, reporting compute usage critically relies on
compute usage as a proxy for risk. But, as we discuss in Section 3.A, compute usage
is a good high-level proxy for risk for general-purpose frontier AI systems, but not
necessarily for some narrow AI capabilities. We discuss more limitations of compute
thresholds in Section 5.

We note that this information would likely be both strategically and commercially
sensitive. A regulator aggregating such information would have great insight into
the state of frontier capabilities and their attendant commercial and national security
opportunities and risks. This information would be a uniquely attractive target for
commercial and sovereign espionage. Even the migration of individual staff across
boundaries between the regulator and competing firms, or across national boundaries,
could have substantial competitive and security consequences. This is especially true
to the extent that reported information might provide insight into how to advance
capabilities that firms or countries might be able to rediscover more quickly than they
could independently develop. Thus, required reporting could inadvertently undermine
the very objectives it aims to achieve through regulatory mechanisms.

International AI chip registry

Another option to increase visibility would be to track the flow and stock of new
cutting-edge AI chips destined for AI supercomputers. Policymakers could require chip
producers, sellers, and resellers to report transfers of AI chips. These transfers could
be registered in a ledger, which could then be audited to detect and assign liability
for diversion (Fist and Grunewald 2023; Shavit 2023). Because of the concentrated
supply chain previously discussed, this has the potential to provide policymakers with
precise information on the amount of compute possessed by various actors, enabling
governance plans that require knowledge of compute flow.66

Implementing an international AI chip registry could involve cooperation from players
in the AI chip value chain. Semiconductor fabs, assembly and test firms, and end users
(especially cloud providers) could track these chips to ensure a chain of custody and
a secure supply chain without diversion or smuggling. A physical unique identifier
could be added to each AI chip during production. How exactly to cost-effectively
add a unique identifier while retaining chip integrity is an open question, but there
exist a variety of ideas worthy of exploration.67 Given the enormous difficulty of

66See Fist, Heim, and Schneider (2023) for a discussion of this idea in the context of current U.S. export
controls and Thadani and Gregory C Allen (2023) for an overview of the supply chain of semiconductors
across geographies by sales.

67For example, one preliminary idea is that of a physically unclonable function (Maes 2013), which is a
method of uniquely fingerprinting a physical device. This can help provide resistance against tampering
attempts. Less costly mechanisms could include procedures used in export control compliance, such as
end-user checks to verify that chips have not been diverted from their last reported user (Shavit 2023;
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manufacturing AI chips, it would also be difficult for someone to build a fab to
manufacture untraced “ghost chips” anywhere near the state of the art.68

An international effort to track AI chips would be a significant expansion of govern-
ments’ visibility into computational activities. Before committing to such an effort, it
is well worth worrying about how such an effort could be misused. For example, what
privacy interests could such tracking infringe upon? How could corrupt or oppressive
policymakers misuse this information? To what extent could small-scale consumers
be exempted, and scrutiny focused only on large operators? Before establishing such
a registry, these questions would have to be answered and weighed against possible
benefits.69

On the other hand, governments already track the cross-border movements of people
and many economic transactions.70 It may be possible to limit chip tracking require-
ments to specific chips (or volumes of chips) where individuals’ privacy interests are
less present, while still retaining the possible benefits of chip-tracking. See Section 5
for more discussion of the risks and possible mitigations.

Privacy-preserving workload monitoring

If regulators can understand where large-scale compute is located and who is us-
ing it, is it possible to understand what the compute is being used for? In principle,
this information is encoded in the workloads that are run by AI supercomputers. In
practice, these workloads are not always legible: a chip, for example, only sees a
sequence of extremely low-level instructions. Furthermore, these workloads are very
important to their users, and may contain private or sensitive information. There-
fore, naive approaches to workload monitoring could not only be impractical but also
potentially disastrous, posing serious risks to privacy and human rights.

However, there may be methods that offer noninvasive insights into what compute is
being used for. Data center operators naturally possess information about the volume
of compute used by their customers,71 which can rule out the development of some

Kurland 2017).
68This would be analogous to the problem of “ghost guns”: privately manufactured firearms that lack

a serial number and are therefore less traceable (Thrush 2021). One might still worry that unscrupulous
fabs might not properly register all of their output. While in practice it seems unlikely that fabs would
underreport their output to manufacture “ghost chips,” there are mechanisms to detect such underreport-
ing. For example, one could install in-line instrumentation on manufacturing equipment or scrutinize
procurement activities for undeclared purchases of chip manufacturing materials (Baker 2023).

69We list some of these limitations in Section 5, and particular research directions in Appendix B.
70For example, “Each person engaged in a trade or business who, in the course of that trade or business,

receives more than $10,000 in cash in one transaction or in two or more related transactions, must file
[IRS] Form 8300” (IRS 2023).

71For example, customers are often billed by the chip-hour, so cloud providers need to track that
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systems.72 Other insights could be derived from both individual AI chip data and
aggregated metrics from the entire AI compute cluster. For example, the training and
inference phases have different computational signatures, and observations about the
computing cluster and the network communication patterns could help to distinguish
between them.73

Other technical changes could provide greater privacy-preserving transparency into
AI workloads. Cryptographic mechanisms on AI chips could allow AI developers to
securely log their workloads, which they could subsequently present to inspectors
to attest their workloads (Shavit 2023). Such logging could be made more difficult
to spoof by adding cryptographic mechanisms on chips (Sommerhalder 2023; Sabt,
Achemlal, and Bouabdallah 2015). Additionally, techniques like “proof-of-learning”
(Jia et al. 2021) could allow developers to precisely account for the quantity of compute
used in a training run. Regulators could then require developers to link these proofs,
reflecting the amount of compute used, with the specific data center where the work
was carried out. Such a process would allow regulators to more accurately monitor
and verify the usage of a data center’s compute resources. It also provides a clearer
distinction between the compute resources used for training purposes and those that
were not.

Privacy-preserving workload monitoring is an example of using privacy-preserving
practices and technologies as a part of compute governance. In the future, these prac-
tices and technologies could equip regulators with visibility and oversight capabilities
while also preserving the strategic and commercial interests of AI developers. As an
analogy, privacy-preserving practices and technologies have been an important part of
nuclear weapons agreements (Negus 2021). Further technical and policy research in
this area for AI could be extremely valuable.74

Transparency into AI workloads could have important implications at an international
level. If large compute investments are made without sufficient transparency about
how that compute is used, fear and suspicion could drive growing investments by
competing countries. A historical example of a similar dynamic is the “missile gap”
controversy of the Cold War, where erroneous estimates of Soviet missile capabili-
ties resulted in dangerous political pressure to strengthen the U.S.’s missile program
in response (Licklider 1970; Belfield and Ruhl 2022). Increasing the transparency
and verifiability of compute usage can significantly alleviate information asymme-
tries and competitive race dynamics (Shavit 2023; Egan and Heim 2023), though in

information for accurate billing.
72Such as frontier models or other high-compute systems.
73For example, clusters used for inference require constant internet traffic to serve customers, whereas

clusters used for training typically access training data hosted locally (Heim and Egan 2023).
74We discuss this category in Section 5.B.
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certain specific cases it could instead increase race dynamics (Emery-Xu, Park, and
Trager 2023).75 While many of the technical mechanisms to enable such verifiable
information-sharing are nascent, greater research and investment could help increase
visibility into AI capabilities, development, and deployment, and thus make strong
international agreements on AI viable.76

Poorly scoped or insecure AI workload monitoring proposals could, however, threaten
personal privacy or the security of commercially sensitive information. We discuss
these risks further in Section 5.A, and possible approaches for mitigating them in
Section 5.B.

4.B Allocation

Policymakers have preferences over how AI is developed and deployed. They must
then decide how to advance these preferences. If policymakers can identify actors that
are more or less likely to use AI in preferred or dispreferred ways, they could promote
preferred uses of AI and decelerate dispreferred uses by changing the allocation of
compute among actors and projects. We call this method of steering AI progress “alloca-
tion.”77 Perhaps the paradigmatic examples of allocation today are major government
investments in domestic AI supercomputing capacity (Section 2.C) and the allocation
of government-owned supercomputers to users, as in the NAIRR (Section 2.B). We
identify several existing and proposed examples of steering AI progress via allocation:

1. Differentially advancing beneficial AI development

75Such techniques are somewhat analogous to “information barriers” in the domain of nuclear ver-
ification, where one might provide enough information to confirm that a warhead has the properties
claimed, but without revealing further information. Moreover, clever combinations of compute tracking,
APIs, inspections, researcher interviews, and other means could help navigate the transparency-security
trade-off often found in arms control contexts (Coe and Vaynman 2020).

76For example, Kissinger & Allison (Kissinger and Allison 2023), argue that AI is digital (and therefore
extremely hard to control in an arms control context): “Second, AI is digital. Nuclear weapons were
difficult to produce, requiring a complex infrastructure to accomplish everything from enriching uranium
to designing nuclear weapons. The products were physical objects and thus countable. Where it
was feasible to verify what the adversary was doing, constraints emerged. AI represents a distinctly
different challenge. Its major evolutions occur in the minds of human beings. Its applicability evolves in
laboratories, and its deployment is difficult to observe. Nuclear weapons are tangible; the essence of
artificial intelligence is conceptual.”

77The unique features of compute mentioned in Section 3.A and Section 3.B make allocation via
compute more feasible than allocation by data or algorithms. However, there is intense economic debate
about the merits of advancing allocative goals through cash transfers versus in-kind transfers (Gentilini
2007; Gentilini 2023), with many economists believing there are good theoretical reasons to favor cash
transfers over non-cash methods of redistribution (Kaplow and Shavell 1994).

42



2. Redistributing AI development and deployment across and within countries

3. Changing the overall pace of AI progress

4. Collaborating on a joint AI megaproject

Differentially advancing beneficial AI development

As a general-purpose class of technologies, AI can be applied for both socially beneficial
and socially detrimental purposes (Brundage, Avin, Clark, et al. 2018).78 Policymakers
seeking to maximize social welfare may therefore wish to intentionally increase the
amount of resources available to beneficial forms of AI research and development—for
example, applications to climate, agriculture, energy, public health, or education.79

Compute is one such resource, and one that is especially critical to frontier AI models
(as discussed in Section 3.A).80

Initiatives to increase compute access to pro-social actors are already underway. This
includes governmental,81 nonprofit (Hofvarpnir Studios 2024), and corporate social
responsibility (Ortiz 2021) efforts to increase compute access to actors who cannot
afford it at market rates in the volume they require for development and deployment
purposes.

78This is true of both AI technologies as a class (i.e., some particular AI systems are overall beneficial
while others are overall detrimental), and many individual AI systems (i.e., the same individual AI
systems can be used for both beneficial and detrimental purposes). The question of who receives these
benefits (or harms) is also critical, as they are unequally distributed, and political actors may wish to
affect these distributions. A full review of the beneficial and detrimental applications of AI is beyond the
scope of this paper.

79To be sure, default market incentives will often create enormous surpluses for consumers and third
parties. However, (1) these market activities may carry negative externalities that should be minimized,
mitigated, or internalized, and (2) market activities will fail to adequately value public goods and some
other types of goods. Intentional efforts to correct these market failures may therefore be warranted,
and subsidization of compute for the provision of goods undersupplied by the market is one way to
accomplish this.

80There is, of course, a long history in computer science of making data (for example, US Government
(2024)) and algorithms freely available for use by a wide variety of actors, such as through open licensing
frameworks (OSI 2006; Open Knowledge 2024). This has undoubtedly enabled a large number of
beneficial applications in AI and other forms of computing. There is also a more recent trend of creating,
curating, and/or publishing datasets specifically to study and address important social issues (Sefala et al.
2021; Microsoft 2024a) and software licenses that specifically disallow unethical uses of the licensed
technology (OES 2024). Because compute is rivalrous, open access to compute (if even a coherent
concept) would not be an optimal way to ensure that beneficial AI projects receive adequate computing
support. At present, nonprofit and academic projects often struggle to secure enough computing resources
when bidding against well-resourced actors for the limited supply of compute (NAIRR and The White
House 2023).

81See Footnote 80, UK Government (2023) and EuroHPC (2024).
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While broad efforts to increase nonprofit actors’ access to compute are laudable,82

more targeted interventions may be even more effective if the goal is to incentivize
the development of particular technologies. One way to achieve this is through
“differential technological development,” a principle that calls for relevant actors to
intervene in the types of technologies developed and their relative timing (J. Sandbrink
et al. 2022). A core idea of differential technological development is that risks from
new technologies can be lessened by prioritizing the development of risk-reducing
technologies. Policymakers can use compute allocation to accelerate the development
of technologies that reduce societal risks, including those from AI.83 Reallocation of
compute (e.g., via subsidies) may also be help to incentivize safe development (Jensen,
Emery-Xu, and Trager 2023). However, we note that increased allocations of compute
also require human capital that can effectively make use of that compute (Musser et al.
2023).

If defensive AI applications—like AI systems for cyberdefense—are feasible (Garfinkel
and Dafoe 2019; Seger, Dreksler, et al. 2023) and are built, policymakers could
distribute access to such defensive technologies widely. For example, this could occur
through liberal provision of subsidized inference capacity for defensive uses of AI or
even a requirement that defense-dominant technologies developed using subsidized
compute be open-sourced (Howard 2023).84

Differential technological development is of particular importance to compute gover-
nance due to the limitations imposed by algorithmic and hardware progress, discussed
in Section 5.A. These long-term trends imply that the cost of achieving any given level
of AI capabilities will fall over time, making it more feasible to use less specialized
compute (Pilz, Heim, and N. Brown 2023).

So, over time, “ungovernable” compute85 will be capable of achieving greater ca-
pabilities than it is today (ibid.). If some of those capabilities pose large risks, one
way that society may be able to defend itself is by differentially allocating more gov-
ernable, more powerful compute toward applications that can defend against risks

82However, if not accompanied by proper oversight, these efforts could carry the same risks as AI
development in general. While we think that the overwhelming majority of nonprofit and academic
actors are likely to use subsidized compute access to prioritize the provision of public goods and socially
beneficial technologies, experience in other domains has shown that poorly overseen scientific funding for
nonprofit actors can subsidize unjustifiably risky or unethical research (Esvelt 2021). Subsidized compute
for less-resourced actors must therefore still be subject to oversight and other forms of governance.

83Building safe AI systems might necessitate such targeted investments. For example, some have
theorized a “safety tax,” wherein producing safe AI is much more expensive than producing AI prone to
accidents (Leike 2022).

84See Seger, Dreksler, et al. (2023) for discussion of the benefits of and alternatives to open-sourcing
as a strategy to deliver public benefits of large models.

85More precisely, compute that should not be subjected to significant compute governance measures
as doing so would prove ineffective or impose unwarranted collateral damage.
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before risk-increasing technologies
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Technology Aim

Reduce or prevent negative societal 
impacts by modifying risk-increasing 
technology.

Technology Aim

Reduce or prevent negative societal 
impacts without modifying the 
underlying risk-increasing technology.

Technology Aim

Create less risky technologies that 
provide similar benefits to riskier 
technologies.

AI Examples

Reinforcement Learning from Human 
Feedback, Constitutional AI, automated 
watermarks, hardware mechanisms for 
verification.

AI Examples

AI for cyberdefense, AI for deepfake 
detection.

AI Examples

General-purpose AI systems that lack 
dangerous capabilities, narrow AI 
systems to substitute for general purpose 
ones in certain contexts.

Non-AI Examples

Permissive Action Links (nuclear 
weapons), DNA synthesis screening 
(synthetic biology).

Non-AI Examples

Bulletproof vests, vaccines, short-range 
missile defense.

Non-AI Examples

Clean energy (substitute for fossil fuels), 
hydrofluorocarbons (substitute for 
chlorofluorocarbons).

How Technological Interventions Can Prevent Harms

Figure 13: How differential technological development can reduce negative societal
impacts. Developing safety and defensive technologies sooner than riskier technologies
and choosing to develop substitute technologies to risk-increasing technologies can reduce
negative social impact. Adapted from J. Sandbrink et al. (2022).
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from ungovernable compute (Pilz, Heim, and N. Brown 2023). Examples could be
cybersecurity and biosecurity applications, to defend against cyber and biological
threats created or amplified by ungovernable compute.86

Redistributing access to AI development and deployment across and within coun-
tries

If AI becomes one of the most economically and strategically important technolo-
gies of the 21st century (Daniels and Chang 2021), the geographic distribution of
access to compute, and therefore the ability to develop and deploy AI without hin-
drance and oversight from other states, may influence the global distribution of power
and prosperity. The fact that the AI compute supply chain is highly concentrated
(Section 3.B) means that a handful of countries have the ability to determine which
countries can receive compute, should they wish to do so.

Two modes of geographical compute redistribution are worth considering. The first,
“negative redistribution,” makes it harder for specific countries, such as geopolitical
rivals or countries that fail to implement AI regulations (US BIS 2022b; US BIS
2022a; Haeck and Moens 2023; Nellis and Cherney 2023; S. M. Khan and Flynn
2020; Davies et al. 2022; C. Miller 2022), to acquire compute.87 Instances of this
are already underway through U.S. export controls, as we detail in Section 2.A.
The second, “positive redistribution,” ensures that specific countries have access to
compute, thereby promoting other policy goals, such as global equity and sustainable
development. This positive redistribution—particularly for the purpose of advancing
global equity—is the focus of this subsection.88

86This doesn’t necessarily mean that the set of chips subjected to any particular compute governance
measure should expand over time. As discussed in Section 5.B, we propose limiting many of the
compute governance mechanisms discussed here to AI chips—a small, distinct, difficult-to-produce, and
expensive subset of all chips—and their surrounding infrastructure. Applying these mechanisms to all
computer chips would be much more difficult (because, among other things, their supply chain is far
less concentrated) and impose too large of a burden on privacy, centralization of power, and economic
growth. For more, see Section 5.A.

87Another consideration that could motivate negative redistribution is that, independent of which states
have compute, proliferation of computing capacity to a large number of states could make international
coordination around responsible uses of compute more difficult (Askell, Brundage, and Hadfield 2019;
Armstrong, Bostrom, and Shulman 2016).

88We note that these two goals may sometimes be in tension. For example, all else being equal,
policymakers might reasonably prefer that AI compute remain in countries with strong state capacity,
so as to prevent its misuse or diversion. However, state capacity is highly correlated with development
(Dincecco and Y. Wang 2022; Jenkins and Rubin 2022; Acemoglu, García-Jimeno, and Robinson 2015;
Geloso and Salter 2020). Thus, any allocative efforts that prevent states with low state capacity from
receiving compute will disproportionately deny compute to less developed states, further entrenching
computational inequities (Verdegem 2022; Knight 2018; Hao 2022; Birhane 2020; Muggah and Szabo
2023). None of this is to deny that there are states in the Global South with state capacity to administer
adequate compute or other AI regulations (Kenya 2019; Thomson Reuters Foundation 2023). This
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The disparity in AI development between the Global North and South has widened
(Yu, Rosenfeld, and Gupta 2023). Compute, like many global resources, is unequally
distributed between countries (Boakye, Garson, et al. 2023; Halopé and Narayan
2022). A handful of countries, concentrated in the Global North, host the vast majority
of AI data centers from major cloud compute providers, themselves headquartered in
the Global North (Google 2024c; Google 2024b; Amazon 2024; Microsoft 2024b).89

Unequal access to compute and other key resources hinders the Global South’s ability
to capitalize on the opportunities presented by this class of technologies (Boakye,
Furlong, and Zandermann 2022; Gul 2019; A. Chan et al. 2021).90 Increasing the
Global South’s access to compute may therefore be an important method for decreasing
global inequality and supporting domestic AI capacity therein (Seger, Ovadya, et al.
2023).91

How might we increase the Global South’s access to compute? Construction of large
data centers requires specialized knowledge and enabling infrastructure, such as
large-scale electrical generation and transmission and water delivery, that may not be
immediately available in many Global South countries. Accordingly, simply reserving
AI chips for delivery to the Global South is likely to be suboptimal for now, though
possibly appropriate in some cases. Longer-term capacity-building programs, combin-
ing technical and financial assistance, could increase domestic capacity to build and
operate AI compute infrastructure in the Global South.92

Multistate collaborations (either entirely in the Global South, or bridging the South—
North divide) to construct large-scale AI compute for use by the Global South, possibly
modeled on or borrowing from public compute projects in the Global North (discussed
in Section 2.C), could also spread risk and reap benefits from scale. However, even
if these proposals were begun today, they would likely take years to make a dent in
global computational inequality. Accordingly, a nearer-term measure might simply
be to reserve some fraction of existing computing capacity for AI development or
deployment in the Global South at subsidized costs.93

disparity also highlights the importance of supporting efforts to improve state capacity in the Global
South (C. T. Okolo 2023), so that trade-offs between these two goals are lessened.

89Of course, customers can and do lease cloud compute capacity across borders.
90Other factors also contribute to this disparity, like a lack of trained AI experts, digital illiteracy, weaker

governance frameworks from governments, infrastructural barriers, and the lack of sufficient indigenous
datasets (C. Okolo, Aruleba, and Obaido 2023; CIPIT 2023).

91Democratization of AI development through increased compute access in Global South countries
would enhance visibility and thus bolster international coordination of AI governance (Adan 2023).

92Detailed recommendations for implementing a capacity-building program are beyond the authors’
own capacities, and in any case beyond the scope of this paper. However, we note that global capacity-
building programs have been highlighted as one of the United Nations’ Sustainable Development Goals
(UN 2024), and have been used in other fields such as civilian nuclear power (U. S. Embassy in Ghana
2023; IAEA 2024) and seabed mining (ISA 2022).

93As with any means-testing program, there would be nontrivial issues regarding how to determine
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The above ideas could also be applied to the allocation of compute within countries.
The AI industry–and a few organizations within that industry–possesses a dispropor-
tionate amount of AI compute relative to academia, startups, or community-based
AI efforts. It may become important to reduce this compute gap, especially when
attending to risks from concentration of power in the hands of a few actors. This
redistribution is one goal of ideas like the NAIRR (Besiroglu, Bergerson, et al. 2024).

Changing the overall pace of AI progress

Given compute’s importance to frontier AI development (as described in Section 3), it
is a powerful lever for influencing the pace of the field of AI as a whole (as opposed to
only some aspects of AI development). Accelerating the pace of AI development aims
to reap the benefits of more innovation (Jones 2021). However, some have argued
that slowing or pausing certain AI development and deployment is warranted (Future
of Life Institute 2023).

Some compute governance interventions have likely already accelerated AI progress.
Government support in different countries for semiconductor manufacturing capacity
has made it easier for companies to lower costs, invest in research and development,
and scale up production (Chen, Lin, and Chu 2013). Some further speed-ups are
likely possible (e.g., via increased tax support for semiconductor manufacturers or
direct government purchases of compute). This might be justified by the innovation
and economic growth that could result.94 However, given the already rapid pace of
developments and the growing amount of private sector investment in compute, it may
become increasingly difficult for governments to take such an active role in speeding
up AI progress.

Meanwhile, slowing down (or more radically pausing) AI development has received
attention in recent years (Future of Life Institute 2023). In light of the extremely
high opportunity costs of doing so, discussants have offered several justifications. One
justification is security: if leading AI developers are not secure enough to defend
against theft or misuse by opportunistic terrorist groups or ill-intentioned states, then
slowing, pausing, or even destroying software that is vulnerable to theft might be
warranted. Slowing AI development might also be warranted if the general rate of
AI progress outstrips the progress in safety and security measures, or if society is not
sufficiently prepared to integrate AI (Danaher 2023).

One approach to restrict the pace of AI development (even in the absence of multilateral

whether these resources were reaching their intended beneficiaries, and how to prevent others from
receiving the benefits not intended for them.

94The magnitude and even the moral value of the impact could vary depending on how these impacts
are distributed across the world.
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regulation95) would be to modulate the quantity of inputs available. Of the major
inputs to AI progress, compute is perhaps the easiest to verifiably modulate, for the
reasons given in Section 3. One simple method of modulating compute availability,
therefore, could be to limit, by regulation, the amount of AI compute that can be
produced every year. This would set a theoretical upper bound on the amount of
compute that could be dedicated to AI progress at any given time, and also slow down
the rate at which compute usage grows (thereby possibly allowing safety progress to
“catch up”).

A crude “compute quota” like this would have a number of drawbacks. Any attempt
to limit output of AI chips will likely raise compute prices, thus harming consumers
(Gellhorn 1975), especially those already struggling to afford compute. Depending
on exactly how much supply is limited, the quota could diminish chipmakers’ profits,
causing persistent political opposition to the quota by powerful firms.96 Artificial
supply constraints are also likely to lead to decreased investment in chipmaking
capacity, which is both contrary to the revealed preferences of many governments, and
may be an issue if higher compute production becomes desirable in the future.97 A
quota, on its own, would not add to the government’s ability to select who gets chips,
other than by possibly pricing certain actors out of the market.

An alternative possible means of using compute supply restrictions to modulate the
pace of AI progress could be a government-operated “compute reserve.” This could first
involve government authorities98 acquiring most or all cutting-edge AI chips produced
by leading chip manufacturers. Government acquisition of chips would likely not be
via expropriation, but rather via direct purchases at the fair market value of the AI

95Note that decelerating unilaterally may be ineffective in a competitive environment (Armstrong,
Bostrom, and Shulman 2016): a unilateral pause by a particular company would not necessarily be
matched by others, nor would a unilateral pause by companies in the Global North necessarily be mirrored
by companies located elsewhere. Pace-setting regulation that binds all actors would be one way of solving
this sort of coordination problem. However, there is reason to doubt the feasibility of such regulation,
especially if it needs to span multiple, rival geopolitical blocs (Thierer 2023).

96The political economy of regulatory compute quotas depends on the current pricing dynamics in
AI chips. Under certain assumptions, some specified supply restrictions would be profit-maximizing for
producers (see, e.g., Gellhorn (1975)). Accordingly, producers often favor public policies that restrict
output levels as a form of rent-seeking. However, there is no guarantee that the optimal level of compute
outputs for modulating AI progress would be the profit-maximizing level for producers. Furthermore, as
noted above, AI chipmaking is already a concentrated market. This suggests that producers already enjoy
substantial price-setting power, and accordingly that additional artificial supply constraints imposed by
regulation are likely to diminish, not increase, profits. Thus, despite the theoretical possibility that a
compute quota would increase producer profits and therefore garner their support, in practice this seems
unlikely.

97This is because building out additional fabrication capacity takes years and many billions of dollars.
If fabs are already producing at capacity, lifting the quota may not yield additional chip output for several
years.

98Either a single government, or a consortium.
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chips.99 This would also maintain incentives to build out new fabs, and thereby create
the option to more easily increase the flow of compute in the future.

After chip acquisition, the reserve authorities could then resell those chips or lease
cloud capacity on them, controlling the flow of compute in order to control the rate of
progress. Before the chips are “released” to the market for use in higher-risk projects,
the reserve operator could possibly recoup some costs by allowing the chips to be
used for non-AI purposes (e.g., graphics rendering), less risky AI projects, or the joint
megaproject discussed in the next subsection.100 The reserve operator could also
choose to block unvetted actors from buying or leasing large numbers of AI chips.

A compute reserve might be administered by and for multiple countries, speeding
up or slowing down the flow of compute into the global economy.101 The presence
of analogous institutions in other domains that attempt to control the supply of key
resources (such as the Strategic Petroleum Reserve and OPEC with oil, or central banks
with the money supply) points to the feasibility of a compute reserve, though the goal
of a compute reserve might instead be to balance innovation and growth with safety
and security.102 Participation in the compute reserve could be incentivized by being
the main or sole route through which advanced AI chips can be accessed.

The compute reserve also has significant downsides. It may give excessive power to

99One example pathway is via use of the U.S. Department of Defense’s authority under the Defense
Production Act, which allows the government to place orders for standard products and require that
these orders be served “first in line.”

100See Section 4.A for discussion of compute use monitoring, which may enable the reserve operator
to ensure that chips “in reserve” are being used for non-accelerative purposes.

101A compute reserve might review evidence on a regular basis—say, every six months—in order to
determine the effectiveness of risk mitigations undertaken in the prior time period, and decide on new
compute influxes accordingly. To illustrate with one concrete example, the reserve might conclude in its
first release decision that AI progress was proceeding somewhat too quickly for society to adapt, and
that, e.g., all purchases made in the prior six months would be fulfilled up to 50% of their size, with
the remaining 50% of each order instead purchased by the reserve and retained by the reserve for at
least the next six months. Or it might conclude that current and near-term levels of compute—plus
some additional margin of algorithmic and data-driven progress—would not pose significant societal
risks, but the generation after that might. The reserve might thus share specific safety and societal
resilience metrics for labs and governments to focus on in order to demonstrate at the next review that
release should continue. One benefit of a compute reserve is that, unlike a petroleum reserve, the reserve
administrator could still theoretically allow the chips in reserve to be used for non-acceleratory purposes
(thereby recouping costs) during “braking” periods, while maintaining the ability to allow acceleratory
uses later.

102Modern independent central banks are designed to be as free as possible from partisan or private
commercial interests, though they do focus on their respective countries or regions. Note that the
compute reserve would not function to “roll back” AI progress but would instead slow it, since it would
(1) continue to allow increases in total compute, (2) not affect access to existing compute, and (3) not
affect the other AI progress inputs, i.e., algorithmic progress and data (except indirectly). It could, once
instituted, however, eventually modulate the speed of progress up or down.
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member states, or the individual policymakers implementing the reserve. By increasing
the demand for chips, it would also likely increase the cost of compute.103 It would
require large up-front capital costs from governments to acquire the chips. Due to
hardware progress, the chips held in reserve would become less valuable over time,
meaning that acquisition cost of the chips could be wasted if the reserve operator
could not recoup costs through “in-reserve” usage.

More broadly, the power to modulate the overall pace of progress in an entire technical
field is a sweeping one, and one that society rarely entrusts to policymakers.104 It
could doubtless be misused in many ways. Whether—and under what conditions—it
would be wise to entrust policymakers with such a power remains an important open
question.

Collaborating on a joint AI megaproject

The term “CERN for AI” is sometimes used to refer to the idea of an international
scientific megaproject focused on AI (L. Kemp et al. 2019; Kerry, Meltzer, and Renda
2022; D. Zhang et al. 2022; Stix 2022; Hogarth 2023; Hammond 2023; Hausenloy,
Miotti, and Dennis 2023). This term is inspired by previous international scientific
megaprojects, like the European Organization for Nuclear Research (CERN), the In-
ternational Space Station (ISS), and the International Thermonuclear Experimental
Reactor (ITER). All three of these projects are notable as collaborations that include
cooperation among geopolitical rivals.105

These international scientific megaprojects (CERN, ISS, and ITER) all have high
fixed capital costs that are beyond the budgets of individual universities (and even
some countries). Countries pooled funding to build the capital-intensive, expensive,
specialized, shared infrastructure for scientific experiments in the public interest.
Similarly, the capital-intensiveness of compute (particularly that required for frontier
AI models over the coming decade), suggests that an analogous “CERN for AI” could
share the cost of building and operating a large compute cluster (and possibly next-
generation fabs).

A truly international CERN for AI could offer an important alternative to large-scale
corporate or national projects. Corporate projects face significant legitimacy problems
after a certain stage of development because they involve a private actor making

103However, it is possible the compute operator would become such a large purchaser of compute that
it would be able to negotiate for lower prices, if legally allowed to do so.

104But, see M. Maas (2022).
105CERN and the USSR had various scientific cooperation agreements since 1967, and Russia had

observer status from 1991 to 2022 (CERN 2023). The ISS involves cooperation between NASA and
Roscosmos, among other space agencies. ITER is funded by seven member parties: the United States,
China, Russia, the European Union, India, Japan, and South Korea.
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large-scale decisions that could affect humanity as a whole (Bengio 2023). An inter-
national project faces fewer legitimacy concerns, especially if its membership consists
of a representative set of democratically accountable actors from all regions of the
world. Another potential benefit of consolidating significant fractions of frontier AI
development in an international institution is that it may be relatively efficient to
ensure the safety and security of that development in such a scenario, as opposed
to more decentralized development.106 This could be true if there are large upfront
safety and security risks for each additional frontier AI developer. Should any of the
participant countries express significant concerns about the safety or security implica-
tions of the next phase, the project could temporarily halt to address those concerns
prior to moving forward.

A CERN for AI could have different technical objectives. Most generally, it could simply
provide computing resources for any large research project in AI. A “CERN for Frontier
AI” could focus on training frontier models, with the objective of doing so safely and
for broadly shared societal benefit. A “CERN for AI for Good” could focus on public
goods, e.g., AI applied toward clean energy, medical research or achieving sustainable
development goals (Vinuesa et al. 2020). Finally a “CERN for AI Safety,” could focus
on a particular public good: improving our understanding of and ability to control the
behavior of AI systems. Because this project would be publicly funded and organized,
it would have a different set of incentives than private sector projects. This would
therefore change the competitive dynamics of the market and could incentivize private
AI companies to compete on a range of dimensions (Coyle 2023; Mazzucato 2021).

A CERN for AI could consider several strategies to disseminating access to its model.107

One method might be structured access (Shevlane 2022), where customers and busi-
nesses across all (participating) nations could obtain API access. Alternatively, with a
sufficiently secure information system, the trained model (or variants thereof) and its
weights could be securely transferred to licensed entities in each participating country,
whether they be private corporations or public agencies. These licensed entities could
in turn offer API access within their countries, or fine-tune the model for particular use
cases. Securely transferring the weights poses an extremely challenging problem; at

106Note that we are not saying this argument definitely holds. One counterargument would be that
parallel safety and security “bets” will lead to faster innovation, some of which will then be shared
across different institutions. Our point is not to suggest that this or any other lever should certainly be
implemented but to give some intuition for why one might consider it and how compute might enable it.

107We note here that benefit-sharing is a key and contentious topic in many international institutions,
agreements, and discussions. We do not have space for a full discussion here. One argument for benefit
sharing is that all people in the world share some level of risk from AI development, so should also share
the benefits. Another is that humanity as a whole has created the “data commons” used for pre-training,
so deserves to share the benefits. However, many international agreements can be seen as a “deal.” For
example, in the Convention on Biological Diversity, the Nagoya Protocol on Access to Benefit Sharing can
crudely be viewed as a “payment for genetic resources” deal. The nature of such potential deals requires
further research.
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the minimum, it would require extremely strong information security at the licensed
entities to prevent theft, as well as protections against misuse of these capabilities.
Should the risks appear sufficiently low – perhaps after a model has been surpassed
by more capable ones – the model weights could be published publicly.

A CERN for AI could see cooperation between otherwise adversarial countries. One
advantage of the CERN model is that countries could build trust by incrementally
ratcheting up investments in a “tit for tat” manner. The larger the scale of the invest-
ments, the less likely it is that one of the participants could be hiding a similarly sized
project. Participants could withhold investments to reflect any potential concerns
about the safety or security of the project. Thus, a CERN for AI could, if incentives
were aligned sufficiently to begin this ratcheting process in earnest, eventually be a
stabilizing force in a potential future AI “arms race.”108

However, a CERN for AI could represent one of the most radical expansions of the
power of international organizations in human history. Given the mixed track record
of international regulation of technology, it is worth being clear-eyed about the large
risks associated with such an effort, and the difficulty of success (Thierer 2023). In the
worst-case scenario, centralizing control of AI in a single organization could increase
the risk that the technology is monopolized by an oppressive or illegitimate government
(Caplan 2008). More mundanely, there is simply no widespread agreement on what
governance of such an organization could look like, or how it could simultaneously
satisfy all stakeholders’ demands. The governance structure of a CERN for AI would
be an important determinant of how desirable it is, and it is far from clear whether
existing proposals provide a satisfactory answer.

4.C Enforcement

Allocation is a blunt tool for public policy. It depends on having reliable ex ante
information about which actors or projects are likely to be beneficial or harmful, and
the ability to differentially allocate compute toward beneficial users and away from
harmful ones.

Reality is more complicated. Users of compute will engage in some combination of
beneficial, benign, and harmful computational activities to various degrees. Deter-
mined actors will also often find a way to circumvent restrictions on their access to
compute (Fist and Grunewald 2023).

Regulators will then need to make sure that these users are abiding by rules regard-

108There has been extensive debate on the term “AI arms race” (Cave and ÓhÉigeartaigh 2018; Scharre
2021; Belfield and Ruhl 2022).
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ing AI development and usage—or are punished or thwarted if they don’t. We use
“enforcement” to refer to a regulator’s capacity to prevent or respond to violations of
rules.

Enforcement naturally complements the visibility and allocation capacities. By exercis-
ing their visibility capacity, regulators can more effectively target their monitoring and
investigation resources to find rule violations. Regulators could then use traditional
enforcement tools, such as civil or criminal penalties, to deter or prevent further
violations. Regulators can also use their allocation capacity to block or reduce flows of
compute to actors they think are likely to violate rules regarding compute use, or as a
penalty for past violations.109 Indeed, the restriction of access to computing power
(e.g., in the form of AI chips) could be applied to enforce a rule.

However, regulators can leverage compute to enforce rules in other, more novel
“technically-enabled” ways.110 By modifying the computing hardware itself (and its
associated software), policymakers may be able to effectively limit the workloads that
the hardware can perform, thereby outright preventing (some) potentially harmful
uses of compute. They could also swiftly—and automatically—respond after the fact
if harmful uses occur.

We describe the following illustrative ways of leveraging compute to enforce rules
below:

1. Enforcing “compute caps” via physical limits on chip-to-chip networking

2. Hardware-based remote enforcement

3. Preventing risky training runs via multiparty control

4. Digital norm enforcement

The interventions we discuss here can be implemented primarily in either software
or hardware. Hardware implementations are likely more robust to tampering.111

They also “travel with” the AI chips themselves, and continue to function throughout
the hardware’s lifetime, regardless of where the hardware is and regardless of who

109Export controls on compute are arguably (at least partially) an example of this.
110The revised export controls proposed by the U.S. government include a request for public comments

on mechanisms relevant to this context. Specifically, they ask: “Today’s AC/S IFR seeks public comments
on proposed technical solutions that limit items specified under ECCN 3A090 or 4A090 from being used
in conjunction with large numbers of other such items in ways that enable training large dual-use AI
foundation models with capabilities of concern” (US BIS 2022b)(p. 104).

111Many of the features that make compute difficult to manufacture also make it difficult to modify
once manufactured. Therefore, the hope is that some of the mechanisms discussed here will be difficult
and expensive to circumvent even if the hardware is possessed by an untrustworthy actor.
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owns it.112 By architecting away the ability to even run certain workloads, they can
remove the ability to use the hardware for the prohibited purpose rather than merely
disincentivizing it. Software-based implementations are more flexible, but are able to
be easily modified—including by malicious actors.

Technically-enabled enforcement could reduce the need for costly physical enforcement
(or threats thereof in order to deter certain actions); given the stakes of AI, the
magnitude and complexity of enforcement resources required to reliably deter misuse
or negligence could otherwise be very large in the future. Furthermore, the possibility
of automating enforcement drastically increases the probability that penalties can
be successfully applied or that certain harms can be prevented.113 And these could
be applied selectively: rather than employing broad measures like restricting access
to chips, regulators could focus on modulating specific workloads, such as training
models above a certain computational budget, or use cases, such as aggregating chips
for use in a supercomputer.114 We discuss risks from these measures, e.g. to privacy,
in Section 5.

We emphasize that technically-enabled enforcement in this context is highly speculative:
the feasibility and robustness of these mechanisms are unproven. These examples
are therefore presented more as directions for investigation rather than shovel-ready
interventions. We also omit discussion of many of the security and engineering details
that would need to be resolved to make these mechanisms effective and robust to
attacks. Any technical additions to chips will likely introduce additional security risks;
these must be carefully weighed against potential benefits. We list some research
directions regarding the security and technical feasibility of these mechanisms in
Appendix B.

These drawbacks underline the need for technically-enabled enforcement to be ac-
companied with traditional methods of enforcement. They cannot operate effectively
in isolation and should be complemented by other governance regimes, including
methods to verify the integrity of these mechanisms.

112They are therefore more robust to failures of allocation, such as allowing bad actors to possess large
quantities of compute.

113Of course, technically-enabled enforcement may not always be the best way to enforce rules for AI.
The regulatory application of this tool requires sensitivity to its context (see e.g. Mulligan (2008)).

114There is no mechanism that differentiates “good AI” from “bad AI.” Rather, these assurances, and
their corresponding mechanisms, are wide-ranging: from influencing the cost of AI model training to
delaying deployment, increasing compute costs, or even applying specific constraints like preventing
chips from training models on biological data. The desirability of each assurance is eventually informed
by the threat model.
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Enforcing “compute caps” by technically limiting chip-to-chip networking

Our first example is a relatively blunt method of leveraging compute to prevent
violations of a rule. Training highly capable AI systems currently requires accumulat-
ing and orchestrating thousands of AI chips; if these systems are potentially dangerous,
then limiting this accumulated computing power could serve to limit the production
of potentially dangerous AI systems. How might this be accomplished? Instead of
broadly limiting access to AI chips to prevent the development of potentially dangerous
AI systems, regulators can implement a more targeted approach.

This strategy would involve restricting the networking capabilities of these high-
performance chips to prevent them from linking together to form large, powerful
clusters. A mechanism for restricting cluster scalability could involve limiting commu-
nication outside of a pre-authorized number of chips. While communication between
pre-authorized chips could occur at unrestricted bandwidth, communication with
external chips or systems could be drastically limited. This confined communication
limits the scalability into the large clusters required for the efficient training of large
AI models. Determining the optimal bandwidth limit for external communication is
an area that merits further research.

Implementing limits on chip-to-chip networking could relax some of the trade-offs
involved with broadly denying access to chips. However, the challenge lies in making
these mechanisms as targeted as possible. It is true that current frontier AI training runs
are extremely communication-intensive and require record-breaking numbers of AI
chips, and yet imposing new limitations could also inadvertently affect other workloads.
This suggests that the chip-level interventions required to limit large accumulations of
compute should be designed to leave consumer use cases unaffected.115

Hardware-based remote enforcement

In situations where AI systems pose catastrophic risks, it could be beneficial for
regulators to verify that a set of AI chips are operated legitimately or to disable their
operation (or a subset of it) if they violate rules. Modified AI chips may be able to
support such actions, making it possible to remotely attest to a regulator that they are
operating legitimately, and to cease to operate if not. Remote enforcement at the chip
level could leverage existing cryptographic technology (Sommerhalder 2023; Sabt,
Achemlal, and Bouabdallah 2015). One potential application of this technology is in
enabling (ex post) visibility of workloads, but it can also be used for automatically
enforcing rules.116

115For example, the consumer gaming experience does not benefit from large numbers of accumulated
GPUs.

116Wherein an AI developer uses chips that store privacy-preserving logs of their workloads, and a
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Consider export controls on AI chips. Using traditional methods of enforcement incurs
high administrative costs and inflates the scope of the controls as they have to focus
on who accesses the chips, rather than what they are being used for.117 If remote
authorization mechanisms are used, these export controls could be “digitized” (Reinsch
and Benson 2021; US BIS 2020). Specialized co-processors that sit on the chip could
hold a cryptographically signed digital “certificate,” and updates to the use-case policy
could be delivered remotely via firmware updates. The authorization for the on-chip
license could be periodically renewed by the regulator, while the chip producer could
administer it.118 An expired or illegitimate license would cause the chip to not work,
or reduce its performance.119

Remote enforcement mechanisms come with significant downsides, and may only be
warranted if the expected harm from AI is extremely high. Notably, such mechanisms
could themselves pose significant security (R. Anderson and Fuloria 2010) and privacy
risks, as well as potential for the abuse of power. The inclusion of a mechanism
to disable the device remotely could be manipulated by malicious actors or even
misaligned autonomous AI systems to disable or otherwise manipulate computing
infrastructure. This could lead to substantial financial losses or even pose risks to
human safety in certain scenarios. Thus, if this approach is desirable at all, these
mechanisms should focus on a specific subset of AI development and scenarios—for
example, where rapid enforcement is particularly valuable.

Preventing risky training runs via multiparty control

Another future-oriented, speculative proposal, which may be justified only in ex-
treme scenarios, involves a strategy to prevent undesirable AI training runs. This
would operate by distributing the control over the metaphorical “start switch” either
among multiple parties or to a governing third party. The power to decide how large

regulator verifies after the fact that the developer is adhering to any requirements for their workloads
(we discuss this in Section 4.A).

117That is, they are targeted broadly at the level of countries and organizations (users) on the theory
that those targets run an unacceptable risk of using compute for harmful purposes. This user-level
targeting is by necessity, as it is not currently possible for governments to reliably monitor or control how
these chips are being exported. These export controls can have the drawback of limiting beneficial or
benign use cases (e.g., scientific research or innovation in societally beneficial domains), even those that
might benefit the countries imposing export controls in the first place. Additional side effects include
increasing incentives for domestic development of semiconductor development by targeted countries,
curbing the revenue of semiconductor companies located in democracies, increasing geopolitical tensions,
and conveying the impression that researchers from certain backgrounds are being targeted as people
(rather than the harmful use cases themselves).

118In principle, remote enforcement need not be “baked in” at the hardware level; one can imagine
higher-level software that enforces rules on a data center; indeed, many cloud computing providers
operate similar software.

119It is not just regulators who would benefit from these mechanisms. For example, chip producers
could automatically enforce violations of their own terms of service.
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amounts of compute are used could be allocated via digital “votes” and “vetoes,” with
the aim of ensuring that the most risky training runs and inference jobs are subject to
increased scrutiny.

The implementation of this could parallel the previous example of remote enforce-
ment; multilateral control could be implemented through the use of multisignature
cryptographic protocols (Cramer, Damgård, and Nielsen 2015). The software and
hardware for AI chips could be modified to initiate processing instructions only when
the workload is cryptographically signed by all parties. Institutionally, a number of
configurations seem worthy of exploration. In a domestic setting, the control rights
can be distributed to government regulators, independent auditors, or an international
body, who should be incentivized to accurately assess the risk of the training run.

While this may appear drastic relative to the current state of largely unregulated
AI research, there is precedent in the case of other high-risk technologies: nuclear
weapons use similar mechanisms, called permissive action links (“PALs”). PALs are
security systems that require multiple authorized individuals in order to unlock nuclear
weapons for possible use. By requiring the involvement of multiple parties, the
system reduces the risk of human error or malicious intent, and increases the level of
accountability for decisions related to nuclear weapons use.

From one perspective, this mechanism could diffuse power, by making it harder for lone
actors to unilaterally take actions with massive externalities (Bostrom, Douglas, and
Sandberg 2016). But from another perspective, it could concentrate enormous power
in the hands of every party that has the right to veto potential technical advances. We
have seen how well-intentioned efforts to give many stakeholders the ability to veto
decisions that could affect them can block various desirable forms of progress (e.g.,
VerWey (2021)), including progress towards the very goals that vetocratic policies
aimed to advance (Fukuyama 2022). As with all policy measures, the substantive and
procedural elements of this policy will determine its desirability.

A separate problem is information security. Vote- and veto-holders must be informed
of the relevant features of the training run to make an informed decision. But some
details of the training run could be sensitive—either to individuals or commercial
actors.120 The information shared with vote- and veto-holders would therefore have
to be very carefully scoped. It may also be possible to construct “zero-knowledge”
proofs of certain claims about proposed training runs that do not disclose sensitive
information. More research into this possibility seems valuable (e.g., Buterin (2023),
Appendix B).

120We discuss these issues further in Section 5.A.
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Digital norm enforcement

In some cases, enforcement via compute can enable more flexible and fine-grained
prevention and response. One example involves implementing digital controls over
compute resources from infrastructure-as-a-service (IaaS) entities, like cloud com-
puting providers. Instead of outright denying access to chips, regulators can set
restrictions on the total amount of compute usage permitted. These restrictions are
digitally enforced by the IaaS companies themselves. Access to large-scale compute
resources could be made conditional upon users complying with risk-reducing policies.
For example, an AI developer (building on the IaaS’s compute) planning a large-scale
deployment could be required to submit audit results of their AI model as a precondi-
tion for access (Egan and Heim 2023). Access could be easily restricted at any time if
potential violations were detected.

Ideally, decision-making regarding these conditional accesses should not be left at the
discretion of IaaS companies, since they face flawed incentives (such as a profit incen-
tive to overgrant access). An alternative would be to have decision-making governed
by regulatory mandates and rely on the technical capabilities of IaaS companies for
enforcement. As discussed in Section 5.A, this approach is akin to how digital services
are shut down for legal violations, such as hosting illegal online drug markets.

This method allows for more flexible and context-sensitive regulation than broad brush
policies (like denying chips). Regulation could adapt to the rapidly evolving landscape
of AI development and deployment while ensuring compliance with established legal
and ethical standards.
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5 Risks of Compute Governance and Pos-
sible Mitigations

While governing AI via compute has significant potential as discussed above, pushing
compute governance to extremes—especially when used as a tool for visibility and
enforcement—bears significant risks that policymakers should carefully evaluate. As
we have tried to emphasize above, compute governance is a double-edged sword: it
can be used to promote widely shared objectives like safety, but it can also be used to
infringe on civil liberties, prop up the powerful, and entrench authoritarian regimes.
We discuss examples of such unintended consequences of compute governance below,
including: threats to privacy; additional opportunities for leakage of commercially
sensitive information; other negative economic impacts; and risks from centralization
and concentration of power.

Further, compute governance is a promising tool for AI governance in large part due
to empirical factors that could change. We discuss such limitations to the feasibil-
ity and efficacy of compute governance. These include: algorithmic and hardware
progress; low-compute specialized models with dangerous capabilities; and evasion,
circumvention, and decoupling.

To close out this section, we provide several overarching recommendations for guarding
against some of these concerns. These include focusing on AI chips that are designed
for AI supercomputers (excluding consumer-grade hardware as far as possible), using
privacy-preserving practices and technologies, favoring compute-based measures for
risks where ex ante measures are justified, periodically revisiting controlled computing
technologies, implementing all controls with substantive and procedural safeguards,
and using governable compute to protect society against risks from ungovernable
compute.

5.A Limitations

Unintended Consequences

Threats to personal privacy

In modern society, computational activity is core to most aspects of virtually ev-
ery person’s life. The economic, social, political, cultural, intellectual, recreational,
and health spheres are all largely enabled and mediated by computation. Thus, it is
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possible that any revelation or monitoring of an actors’ computational activities could
reveal private and sensitive information.

A number of the compute governance possibilities we explore (e.g., required reporting
of large-scale training compute usage from cloud providers and AI developers, interna-
tional AI chip registry, and privacy-preserving workload monitoring.) involve giving
some actor more visibility into specific computational activities. For example, required
reporting from cloud providers on customer usage could reveal sensitive information
about companies or individuals. This visibility may reveal information about computa-
tional activities in which individuals have a legitimate privacy interest,121 or in which
companies have a trade secret interest. It is reasonable to worry, then, that increasing
visibility into AI-relevant computation could carry significant risks to privacy and civil
liberties (e.g., Thierer (2023); Howard (2023)).

Even in the context of large computing clusters, trade-offs between monitoring and
privacy or security arise and cannot be addressed solely through means previously
discussed, such as structured access via APIs. For example, cloud computing raises
“tenant” privacy considerations—where customers seek assurance that their cloud
provider is not, for example, stealing their IP—that need to be protected strictly and
that pose challenges for AI-related monitoring. Government (especially military) data
centers may be particularly sensitive to disclosure, and the semiconductor supply chain
is regularly targeted for espionage purposes, which could compromise some efforts
discussed here absent significant effort.

Opportunities for leakage of sensitive strategic and commercial information

Many of the compute governance ideas discussed above—especially those in Sec-
tion 4.A—involve sharing information about compute and compute usage with policy-
makers. As discussed, there can be large benefits to this sort of visibility. But where
these approaches have poor information security or are overly broad, they could create
opportunities for the disclosed information to leak, to the competitive detriment of the
regulated companies. Such leaks could also undermine trust and exacerbate racing
dynamics, making it more challenging to establish effective policy for the governance
of AI.

Frontier AI labs increasingly withhold information about the processes used to create
their flagship models, including the amount of compute used to create them.122

Revealing this information could, for example, help commercial competitors and
geopolitical rivals understand how great of an investment would be needed to replicate

121However, we note that most of the visibility mechanisms we discuss above are targeted at corporate
model developers, not consumers.

122For example, compare GPT-2 (Radford et al. 2019) with GPT-4 (OpenAI et al. 2023).
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the capabilities of an existing model. In some instances, the details sought by regulators
may be considered highly confidential within the frontier AI labs themselves, accessible
to only a select group of employees. Thus, secrecy helps AI labs preserve their economic
competitiveness, and also slows diffusion of capabilities advances to geopolitical
rivals. However, as this information is made available to policymakers, additional
opportunities for this information to leak arise.

Similarly, cloud compute providers often do not release much information about the
location, capacity, and operation of their large data centers. They invest a substantial
amount in physical security and cybersecurity (Pilz and Heim 2023). Policymaker de-
mands for access to or visibility into the supply chain or operation of these data centers
could create additional vectors for attack or compromise of sensitive information.

Poor information security could dramatically increase the costs of compliance for AI
companies, leak trade secrets, and accelerate proliferation of potentially dangerous
capabilities (Anderljung, Barnhart, et al. 2023). As discussed in Section 5.B, com-
pute governance measures must therefore be carefully scoped and implemented with
information security in mind.

Negative economic impacts

Research by the U.S. Bureau of Economic Analysis suggests that the digital economy
accounts for 10% of U.S. GDP (Highfill and Surfield 2022).123 The “permissionless”
nature of most computational activity is a large part of why digital technologies have
been such a force for economic growth (Thierer 2014). It is therefore reasonable to
worry that placing burdens on access to certain compute—the substrate of the digital
economy—could impose meaningful economic costs (Thierer 2023).

For example, we consider KYC requirements for access to large-scale computation
above. A skeptic might worry that even a presently high threshold for KYC checks will
ultimately cover a sizable portion of the AI industry as compute usage increases, causing
significant frictions to economic activity. We also consider export controls, but the
history of export control policy is replete with debates around the trade-offs between
strategic benefits from controlling exports to rivals and increasing domestic production,
including general skepticism toward the effectiveness of many controls (Mastanduno
1992). Some of the more dramatic governance approaches we explore above—such
as the CERN for AI and multiparty control of large-scale compute usage—contemplate
centralizing or concentrating the development of the most capable, compute-intensive,

123This number is expected to grow significantly; the revised definitions for GDP due to be adopted
by the UN in 2025 will likely set out a consistent and more inclusive method for measuring the digital
contribution across countries, and work is underway to define and measure the contribution of AI (Briggs
and Kodnani 2023).
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general AI systems. However, if that is not accompanied by widespread ability to build
on and deploy such systems, we may fail to harness the creativity of the market, with
accompanying loss of economic growth.

Risks from centralization and concentration of power

Right now, control over computation is fairly widely distributed.124 Greater central
regulatory or allocative authority over large concentrations of compute will increase
centralized control over an increasingly crucial economic and political resource. This
carries serious risks (Thierer 2023; Howard 2023).

Some of the risks from centralized control are technical. Remote enforcement mecha-
nisms like kill switches can introduce security risks and the potential for control or
manipulation (R. Anderson and Fuloria 2010). Compute visibility mechanisms may
create concentrated repositories of information that are attractive to bad actors.

Other risks are political. With increased government control over AI-relevant compute,
powerful actors—including corporations—may try to wield the power of the state for
their own ends, e.g., attempting regulatory capture. More fundamentally, history shows
that centralizing power can carry significant—and even catastrophic—downsides,
such as entrenching existing inequalities (Golden and Londregan 2006), suppressing
dissent (Wallach 1991), creating poor epistemic standards among governing powers
(E. Anderson 2006), and promoting poor economic decision-making (Acemoglu and
Robinson 2012; Scott 1999).

Issues of Feasibility and Efficacy

Algorithmic and hardware progress

Compute governance is more effective when, all else equal, (1) it takes a large amount
of compute to achieve a certain level of capabilities, (2) the cost per unit of compute is
high, and (3) using a large amount of compute requires usage of a large data center.125

However, certain long-run trends are slowly weakening each of these. Due to algorith-
mic progress, it takes fewer and fewer computational operations each year to achieve
a given level of AI performance (Hernandez and T. B. Brown 2020; Erdil and Besiroglu

124However, as discussed above, the supply chain for AI chips and large data centers is extremely
concentrated. Existing compute providers do not seem to leverage this existing power for political or
ideological purposes, though perhaps they will in the future. This dynamic resembles the leverage that
social media and other communications platforms could (and often do) exercise over speech on their
platform, which is the subject of ongoing controversy (e.g., Klonick (2017)).

125This is because larger data centers are (1) easier to detect, (2) more expensive to build, (3) less
common, and (4) more likely to be used for larger training runs, given the efficiencies of hosting a
training run in a single data center.
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2022b).126 Due to Moore’s Law127 and more specialized architectures, a dollar can buy
many more operations every year (Hobbhahn and Besiroglu 2022; Hobbhahn, Heim,
and Aydos 2023). Also, major progress in communication-efficient training could allow
more decentralized training—i.e., splitting a single training run across multiple data
centers—allowing training runs of a constant size to be hosted on multiple smaller data
centers (Yuan et al. 2022). This makes it harder to identify and distinguish data centers
potentially useable for large training runs. It is unclear whether these trends will
continue in the long run, and what their limits, if any, are. Thus, each year it becomes
more feasible to train models to a given level of performance using less, cheaper, and
more decentralized compute, and consequently somewhat less governable.128

The extent to which this effect undermines compute governance largely depends on
the importance of relative versus absolute capabilities. Increases in compute efficiency
make it easier and cheaper to access a certain level of capability, but as long as scaling
continues to pay dividends, the highest-capability models are likely to be developed by
a small number of actors, whose behavior can be regulated via compute (Pilz, Heim,
and N. Brown 2023). This dynamic could change if the scaling paradigm diminishes
in effectiveness (Lohn 2023) or if decentralized training becomes feasible.129

That is to say, over time the amount of compute needed to train a system with a
particular level of capability (e.g. GPT-4 or Claude 2 level in 2023) will decrease, but
the amount of compute needed to train a system with a frontier level capability (a
hypothetical GPT-5 and GPT-6 or Claude 3 and Claude 4) will increase.

Low-compute specialized models with dangerous capabilities

Specialized models trained on high-quality data require significantly less training com-
pute to reach a high level of performance on particular tasks, compared to today’s most
well-known generally capable models. For example, AlphaFold 2 achieved superhuman

126Compute itself is arguably a significant driver of algorithmic progress (Barnett 2023), as it enables
experimenting with more architectures, scaling up what works, and gaining insights that may be only
visible at scale.

127Moore’s Law originally referred to the density of transistors on a chip (G. E. Moore 1998), but has
since been used colloquially to refer to the general exponential improvements in the performance of
chips (in large part due to increasing transistor density).

128Dramatically improved computing hardware would certainly change aspects of AI development, but
might not necessarily alter the role or importance of compute governance. Semiconductors have powered
computing for decades and will likely continue to do so. Alternative compute architectures seem to face
significant challenges: quantum computing is likely still distant and poorly suited for training AI models
(Sevilla and Riedel 2020). Neuromorphic chips are primarily useful for inference, and likely still require
the silicon supply chain in the short term. Optical computing remains mostly speculative. While new
hardware may improve efficiency, it would not eliminate the need for computational power to develop
AI systems.

129While progress in decentralized training may allow more actors to train models of a certain capability,
such efforts would likely still be enormously resource-intensive.
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performance on protein folding prediction using fewer than 1023 operations—two
orders of magnitude less compute than models like GPT-4 (Epoch 2022). If such
low-compute models could cause significant harm, compute governance could be inef-
fective or inadvertently impose on harmless activity. Compute governance seems most
appropriate where risk originates from a small number of hugely compute-intensive
general models. This fact is also recognized in the 2023 U.S. Executive Order on AI,
where reporting requirements are imposed on models trained on biological sequence
data using three orders of magnitude less compute than other models—1023 operations
vs. 1026 operations (The White House 2023)—in light of such models’ potential for
biological weapons design (J. B. Sandbrink 2023).

Dangerous capabilities can also arise through changes made to AI systems post-training.
For example, with just $200 and one GPU, researchers were able to untrain (via fine-
tuning) the safety features of Meta’s Llama 2 Chat (the model’s weights were publicly
available). This intervention caused the subverted model to respond to requests for
harmful information in the vast majority of cases (Lermen, Rogers-Smith, and Ladish
2023). This was despite Meta’s investments in safety testing and red teaming (Touvron
et al. 2023). A broader set of policy approaches will be needed to further investigate
and mitigate these risks.

Once trained, high-compute models can be run using less costly computational re-
sources. Some important and (potentially dangerous) AI capabilities may be accessible
without high-end compute. For instance, protein folding capabilities can be harnessed
with only a handful of inferences (Jumper et al. 2021). One can imagine successor
models trained on biological data that could potentially use small amounts of inference
compute to identify novel pathogens. Moreover, there is growing interest in the down-
sizing of AI models to be compatible with consumer or edge devices like smartphones
or laptops. For example, Stable Diffusion v1.5 (albeit operating slowly) can now run
locally on a phone (Vincent 2023), potentially giving rise to the proliferation of visual
“deepfakes.”

In general, compute governance measures would be unable to reliably “reach” the
computing hardware sufficient to create or run a small number of instances of such
low-compute models. Regulation of such low-compute models will require other policy
approaches.

Incentives for diversion, evasion, circumvention, and decoupling

Actors are likely to attempt to circumvent and evade compute governance inter-
ventions, especially where their access to AI chips or their privacy is severely affected.
Cutting off access to compute, for example—either preemptively or reactively—is a
blunt instrument and has many downsides. We are already seeing such dynamics play
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out as a result of U.S. export controls on AI chips to China (Fist, Heim, and Schneider
2023).

In the short term, there are attempts to circumvent these AI chip export controls via
chip smuggling, using non-controlled chips, or accessing cloud compute (Fist, Heim,
and Schneider 2023; Grunewald and Aird 2023). Attempts by non-state groups to
evade controls on other materials, such as explosives, chemicals, biological agents,
and radioactive material, are common (Gregory C. Allen, Benson, and Reinsch 2022).

In the medium and long term, however, denying compute could further incentivize
other attempts to get around a limit. Squeezing one part of the supply chain puts
pressure on other parts. Actors without access to high-end chips are incentivized to
find ways to utilize larger quantities of lower-grade chips. Restricting Chinese access
to AI chips creates even stronger economic incentives to build a supply chain free of
U.S. involvement. Though this would be incredibly challenging, over time, this could
potentially create a wholly separate supply chain, reducing strategic interdependence
and the ability to govern AI using compute—often referred to as “decoupling.”

Separately, additional scrutiny on training runs above a certain threshold could further
incentivize research into algorithmic breakthroughs. However, those incentives are
already very strong since they can increase one’s “effective compute” given a certain
quantity of actual compute.

5.B Guardrails for Compute Governance

Given these serious downside risks, compute governance efforts should be thoughtfully
designed and executed, and include safeguards to protect against abuse. We explore
some possible approaches to doing so here. A recurring theme of these heuristics is
the need for compute governance measures to be carefully scoped to tackle the largest
risks while reducing the impacts on consumers and individuals.

Our five principles are:

1. Exclude small-scale AI compute and non-AI compute from governance

2. Implement privacy-preserving practices and technologies

3. Focus compute-based controls where ex ante measures are justified

4. Periodically revisit controlled computing technologies

5. Implement all controls with substantive and procedural safeguards
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This list is not intended to be exhaustive; we think additional research on guardrails
for compute governance has very high value.

Exclude small-scale AI compute and non-AI compute from governance

Many of the concerns listed above are most concerning if we assume that compute
governance is applied to all forms of compute at all scales. But this is not what we in
this report mean by compute governance. Part of the appeal of compute governance
is the ability to distinguish reasonably well between compute that is likely to be put to
particularly risky uses and compute that is used for overwhelmingly beneficial and
benign purposes. In particular, as we have discussed, AI-relevant chips are a small
and distinct subset of all computer chips. The large-scale computational resources
needed for frontier AI systems are both unattainable for virtually all but the wealthiest
consumers and reasonably easy to distinguish from other computations with minimally
intrusive inspections.

One way to scope compute governance to avoid some of the downsides to privacy
and concentration of power would therefore be to clearly exclude consumer-scale
compute and non-AI chips130 from many of the mechanisms discussed here. The Biden
export controls and recent executive order on AI focus on industrial-scale compute
for AI, targeting only the most advanced AI data center chips, the very largest data
centers,131 and frontier training runs bigger than any yet run. For example, the
executive order directs the U.S. Department of Commerce to establish Know-Your-
Customer requirements for the provision to foreigners of enough compute to train
a 1026 operations model.132 Buying that amount of compute from a cloud compute
provider would currently cost no less than $100 million at on-demand prices.133 No
individual consumer, or even university lab or start-up, is going to be operating at that
level, only large companies.

Moreover, it is important to note that the AI chips and large data centers that are the

130Of course, it may make sense to govern other specialized computing hardware for reasons other than
AI governance. For example, the U.S. government controls other types of computing hardware, such as
radiation-hardened chips (see, e.g., ECCN 9A515, 4A001 (US BIS 2023)). The U.S. is also considering
imposing controls on quantum computing hardware (Williams and Cherney 2022). Since our primary
concern is AI compute, we do not mean to imply that such controls are inappropriate.

131The computing cluster needs to meet an aggregated computing performance of more than 1020

operations per second, a chip interconnectivity of more than 100 Gbit/s, and be housed in a single data
center.

132Provided the model is trained in a data center that needs to be reported to the Department of
Commerce.

133GPT-4: 2× 1025 FLOP for training (Epoch 2023); H100 performance: 990 teraFLOP/second (peak
FP16 tensor performance without sparsity) (NVIDIA 2024b); Assuming 30% utilization; ∼ $5.60 per
hour per H100 (AWS p5.48xlarge H100 instance, 3-year reserved price, estimate) (Morgan 2023); AWS
p4d.24xlarge A100 instance, 3-year reserved price (Amazon 2023). Result: ∼ $100M.
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focus of this report constitute a minute fraction of all computational activity, meaning
that governance measures targeted at them should leave the overwhelming majority
of chips (and computations thereon) untouched.

Estimates of the Total Chip Production in 2022
The area of each shape represents relative proportion

High-End Data 
Center AI Chips

High-End chips

Less than 1% of all high-end 
chips produced

≤7nm chips All chips

High-End Data Center AI Chips
Less than 0.00025% of all chips produced

The tiny dot in the center of the circle represents the proportion

Figure 14: Data-center AI chips are a minor segment of overall and high-end chip
production. For 2022, we estimate that the number of high-end data center AI chips
constituted less than 1% of all high-end (≤7 nm) chips and less than 1 in 400,000
(0.00026%) of every chip produced.134

However, this may not always be the case: there is a risk that consumer-scale and AI
computation of concern become less separable over time. AI is not inherently limited
to data center-grade AI chips, and the landscape of AI hardware will continually evolve
in response to technological advancements, regulatory constraints, and the changing
needs of AI applications. No foundational facts rule out the technical possibility of
training models by linking together many gaming GPUs, either in a dedicated cluster or
via massively decentralized training (which is currently technically infeasible). While
there would indeed be a performance penalty for doing so, this may not be significant
enough to deter a motivated actor. In such situations, governments may need to rely
more on tools beyond compute governance to meet their goals.

134Heim and Pilz (2024) outlines the method for these estimates.
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Implement privacy-preserving practices and technologies

Where compute governance touches large-scale computing that contains or could
reveal personal information, care must be taken to narrowly tailor the compute gov-
ernance measures so that they accomplish much of the possible risk-reduction with
minimal intrusion on privacy. Take KYC for cloud AI training: applying KYC only to
direct purchasers of large amounts of cloud AI compute capacity (as Executive Order
14110 proposes) would impose almost no privacy burdens on consumers. KYC could
also feasibly draw on indicators already readily available—such as chip hours, types of
chips, and how GPUs are networked—preserving privacy for compute providers and
consumers (Egan and Heim 2023).

One obvious guardrail that should apply to any compute governance measure that could
expose (or create opportunities to leak) sensitive information135 (see Section 5.B) is to
design the measure with information security in mind. A full overview of how to do so is
beyond the scope of this paper. However, we would strongly encourage policymakers to
consider commonsense measures such as narrowly tailoring the information disclosed
to policymakers, using secure channels for communication, and limiting access to
sensitive information.

New technologies may also expand the amount of risk-reduction that can be achieved
for any given level of intrusion on privacy—or equivalently, reduce the intrusion on
privacy needed for any amount of risk reduction (Trask et al. 2020; Bluemke et al.
2023). For example, new hardware and software technologies could enable regula-
tors to receive limited reliable information about whether computations complied
with regulations—perhaps just a single bit of information that indicates compliance—
without making any other data available to them. These technologies, if feasible and
secure, could dramatically reduce the potential for compute governance to be used for
surveillance (and therefore concentration of power) and other privacy infringements.

Privacy-enhancing technologies may also make new sorts of agreements possible. In
arms control agreements, state actors often desire verification methods that are both
highly reliable—so that they can be assured that their counterparties are not defecting
from the agreement to achieve a strategic advantage—and secrecy preserving—so
that inspections do not reveal secret information, other than that needed to demon-
strate compliance (O’Neill 2009; Coe and Vaynman 2020). In the nuclear context,
“information barriers” have been developed to provide just enough information about
warheads to verify compliance with a given agreement, while ensuring appropriate
secrecy beyond that (see sources collected at Nuclear Threat Initiative (NTI 2015)).
Some proposals have been developed to navigate such challenges—for example, cryp-

135This should be construed broadly, to include personally sensitive information as well as information
that is sensitive from a commercial or national security perspective.
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tographic escrow as a technique for addressing North Korea’s security concerns while
enabling enforcement of agreements (Philippe, Glaser, and Felten 2019). Drawing
on the best of science, engineering, institutional design, and other sources can help
alleviate trade-offs where they arise (Trask et al. 2020).

Focus compute-based controls where ex ante measures are justified

Compute governance (especially in its “allocation” and “enforcement” forms) is often
a blunt tool, and generally functions upstream of the risks it aims to govern and the
benefits it seeks to promote. Policymakers have often preferred ex post mechanisms
that impose some cost (such as a tax, fine, or penalty) for externalities and other
dispreferred outcomes after they have occurred (e.g., Galle (2013)).

There are exceptions, however. In particular, certain types of harms justify ex ante
efforts at prevention, such as where the harm is so large that no actor would be able
to compensate for it ex post. Catastrophic risks and risks to national security often
have this nature. Compute controls could therefore be targeted only at risks that are
of such quality or magnitude that leaving regulation to ex post mechanisms would fail
to adequately address them (Anderljung, Barnhart, et al. 2023; Kolt 2023). For more
detailed discussion, see Section 3.C.

Frequently revisit controlled computing technologies and thresholds

Regulatory thresholds (like a training compute threshold of 1026 operations) or list-
based controls on technologies, such as those used in export controls, can become
outdated fairly quickly. This applies in both directions: changing circumstances might
mean that controls are either too loose—e.g., because a new technology has not yet
been controlled, or an old technology has become newly riskier—or too strict—e.g.,
because a controlled item is freely attainable on the open market (Mastanduno 1992).
In the fast-moving domain of AI, more significant changes to policy may be needed
more frequently than in other domains. Compute regulators should therefore ensure
that their governance mechanisms are regularly reviewed at least every year, assessing
their particulars—e.g., lists of controlled technologies, particular thresholds used,
methods for detecting violations—as well as whether they are achieving their intended
goals.136

Ensure strong substantive and procedural safeguards

As we acknowledged above, compute writ large is a societally important technol-
ogy with many beneficial and benign use cases. In the future, compute’s importance is

136As a possible model, the Federal Select Agents Program statutorily requires the administering agency
to review controlled agents at least biennially (7 U.S.C. § 8401).
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likely to increase, and so the stakes of preventing mismanagement of this important
resource are likely to increase.

Any implemented compute control measures should therefore include both substantive
and procedural safeguards, at the statutory level if possible.137 Substantively, such
controls could prevent downsides from compute governance by, for example, limiting
the types of controls that can be implemented, the type of information that regulators
can request, and the entities subject to such regulations. Domestically, procedural
safeguards could include such measures as notice and comment rulemaking, whistle-
blower protections, internal inspectors general and advocates for consumers within
the regulator, opportunities for judicial review, advisory boards, and public reports on
activities.

137Of course, this too must be balanced with the need for some flexibility given rapidly changing
technical circumstances.
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6 Conclusion

Compute has properties that are unique among the various inputs to AI capabilities,
and it is particularly important for governance of compute-intensive frontier AI models.
Prominent AI governance proposals and practices in the past few years reflect this
realization. With this paper, we hope to provide a better theoretical understanding of
the promises and limitations of compute governance as a vehicle for AI governance,
and spur more creative thinking on the future of compute governance.

A few themes of this paper are worth reiterating. Of the inputs to AI, compute is the
most regulable, due to its detectability, excludability, quantifiability, and supply chain
concentration. Where inputs-based governance of AI is warranted, therefore, compute
provides a good lever for such regulation.

We identify three core governance capacities that compute can enhance, and provide
examples of each: (1) increasing regulatory visibility into AI capabilities and use, (2)
allocating resources toward safe and beneficial uses of AI, and (3) enforcing prohibitions
against irresponsible or malicious development or use of AI. However, we emphasize the
many potential limitations and downsides to some approaches to compute governance,
especially with regard to centralization of control over an increasingly important
technology. We therefore conclude by providing heuristics that, if followed, should
help compute governance measures to be carefully scoped to tackle the largest risks
while reducing the impacts on consumers and individuals.

A number of the ideas in this paper are exploratory or tentative. In particular, many of
the policy mechanisms described in Section 4 are sketches of possible directions for
compute governance, not fully fledged policy proposals. We hope that further work
will determine whether and how these mechanisms can be designed and implemented
in accordance with the limiting principles set forth in Section 5. In Appendix B, we
list additional open questions in compute governance.

Hardware and software progress will over time erode the effectiveness of many com-
pute governance mechanisms, as these secular trends drive down the hardware cost
of achieving a particular level of AI capabilities. In Section 5 we propose limiting
compute governance mechanisms to AI chips. If this advice is heeded, many AI
capabilities—including risky ones—will become increasingly achievable using “un-
governable” compute. To mitigate these risks, society will have to use more powerful,
governable compute timely and wisely, to develop defenses against emerging risks
posed by ungovernable compute.
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A The Compute-Uranium Analogy

There is a suggestive analogy between a key physical input to two powerful tech-
nologies: compute and data centers in the case of AI, and uranium and enrichment
facilities in the case of nuclear energy or weapons.138 Uranium mining and enrich-
ment and compute fabrication and training both lead to outputs that can be used for
both safe and harmful purposes, require significant capital investments, and can be
differentiated by quantitative measures of quality (e.g., operations per watt or the
level of enrichment). One way of envisaging this analogy is shown in Figure 15.

AI Training is Similar to Uranium Enrichment

Uranium 
Enrichment

AI Training

Uranium 
Ore Yellowcake

Low Enriched Uranium

Low Capability AI model

Highly Enriched Uranium

High Capability AI model
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Data CenterFabrication

Figure 15: The analogy between uranium enrichment and AI training. For both AI
(chips) and nuclear energy (uranium), there is a key input that is difficult to produce
and potentially regulable.

Uranium ore goes through a process of mining to produce yellowcake, which then goes
through a process of enrichment to produce either low or highly-enriched uranium.
One can draw an analogy with compute: materials go through a process of fabrication
to produce chips, which then are used in a process of training to produce a model
(below or above some level of capability). Each process is lengthy, difficult, expensive,
and potentially amenable to monitoring.

This analogy, while imperfect,139 is encouraging. Risks associated with nuclear en-

138Nuclear weapons can also be made with plutonium, though similar considerations apply.
139Like other analogies, the comparison between training and uranium enrichment has its limitations.

In particular, while both are dual-use, it is possible to infer a narrower set of potential uses for enriched
uranium, while high-capability models can be applied to a wider variety of use cases.
The analogy is inexact as the chips are the physical location where the process occurs, rather than the
material that is processed—which is data using particular algorithms. So an individual AI chip processing
data, say, can be compared to an individual centrifuge enriching uranium, while a data center can be
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richment have been (more or less) managed for decades. A wide variety of technical
and political measures are used to control the production, flow, and use of nuclear
materials. Many of these can be thought of as “accounting”: keeping and checking
careful records of who is creating nuclear material, where it goes, how it’s used, and
how it’s disposed of. There are national and international regimes to track and monitor
mines, yellowcake, enrichment plants, and enriched uranium. These measures include
export controls, inspections by the International Atomic Energy Administration (IAEA),
remote monitoring, unique identifiers such as serial numbers, and regulations around
the use and disposal of nuclear materials. Enrichment capacity has been a key focus
of nuclear nonproliferation regimes, as it is the key determinant of “breakout time”:
the minimum time for a state to produce enough weapons-grade enriched uranium
fuel for a single nuclear weapon. Taken together, these measures have contributed to
a low rate of proliferation and the prevention of a nuclear conflict since 1945.

Analogously, we may also want to consider regimes to track and monitor chip fab-
rication, the resulting advanced AI chips, and their final destination in data centers.
Much like how unique IDs and tamper-proofing are employed to track uranium, com-
plemented by monitoring through inspections and intelligence sources like satellite
footage, we could envision similar methodologies being theoretically applicable to
the advanced AI chip supply chain (Baker 2023). Compute may even have some
advantages over nuclear. For example, there are between 6 and 59 manufacturers for
each of the dual-use goods under the Nuclear Suppliers Group’s purview (Doyle 2019).
By contrast, some steps in the compute supply chain have only a single company.

Our use of this analogy should not be interpreted to mean that we overlook its limita-
tions. Difficult political battles were required to achieve today’s modern institutions,
and we recognize that nonproliferation governance continues to be a contested space,
as demonstrated in the last nuclear nonproliferation treaty review conference (UN
2022; Potter 2023). As Stewart (2023) writes, modern nuclear nonproliferation gov-
ernance evolved over decades, through international crises rather than preemptively,
resulting in a governance patchwork instead of a universally coherent standard. And
we would not be able to apply the same technical methods used for monitoring ura-
nium to compute. The nonradioactivity of compute makes it more difficult to detect
at ports and other border crossings than nuclear material. Many efforts related to
tracking nuclear material, including international inspections, depend on the ability
to correlate radioactivity emissions with the precise chemical properties of uranium
(as well as plutonium).

There is another significant limitation associated with the nuclear analogy; namely,
while the emphasis on hardware excludability advances nonproliferation aims, there
are no obvious parallels in nuclear proliferation to the release of model weights. Recent

compared to an enrichment plant.
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historical cases demonstrate that access to information about nuclear weapons design—
non-rivalrous, easily replicable and transferable—is often an insufficient condition for
nuclear proliferation (R. S. Kemp 2014; Ouagrham-Gormley 2014). We can reasonably
conclude that a bad actor with access to scientific information would not seriously
undermine the existence of the nuclear nonproliferation regime. The release of model
weights, on the other hand, poses a significant threat to nonproliferation compute
regimes, because their public availability would allow an individual with a moderate
amount of machine learning expertise to bypass the large compute requirements
needed for training a model.140 This is an argument not only for strong cybersecurity
controls, but for avoiding a repeat of the historical setbacks suffered by nuclear
nonproliferation regimes and adopting preemptive governance mechanisms before
the wide availability of model weights potentially undermines safeguards.

Despite these limitations with the analogy, it is striking that society has also safely
produced fairly large quantities of nuclear power (Ritchie and Rosado 2023) and that
there have been zero instances of nuclear terrorism in the nearly 80 years since the
advent of nuclear weapons technology. The political and technical regimes that govern
nuclear technology likely deserve some credit for this situation. While this system is
certainly imperfect—rogue states like North Korea have still managed to build up their
nuclear capacity in part via illegal proliferation networks (Chestnut 2007; Reiss and
Galluci 2005)—it is nevertheless a proof of concept for an institutional design that
governs a highly sought after, dual-use technology at global scale.

B Research Directions

Policy implications of increased compute efficiency

Given ongoing algorithmic and hardware progress, an AI capability that is initially
only available to a small number of well-resourced developers will slowly diffuse to
increasingly compute-limited actors over time (Pilz, Heim, and N. Brown 2023).

This makes it challenging to construct enduring compute-based policy. Instead, com-
pute governance interventions may be about influencing not whether but when certain
capabilities are made available, to whom, and for what purpose. This view suggests
that society will need to use the time bought by certain compute governance inter-
ventions to prepare for the widespread diffusion of advanced AI capabilities. To what
extent is this picture correct? If so, what can policymakers do to increase society’s

140Because the computing power necessary to run a model is much less than the computing power
needed to train a model.

76



resilience to the diffusion of increasingly capable AI systems?

Relatedly, what does the offense-defense balance look like for different AI capabilities?
One could potentially use the compute required to develop different capabilities as one
input to the offense-defense balance. Will the proliferating systems favor the offense
or defense? Will it be possible to use compute resources to counter harm, such as by
using highly performing systems or deploying defensive applications on a large scale?

Trustworthy verification of compute capabilities and usage

Implementing compute governance requires the ability to verify claims about ac-
tors’ compute capabilities and usage (Brundage, Avin, J. Wang, et al. 2020). However,
validating these claims often involves accessing sensitive information that actors wish
to keep private. On-site inspections intended to verify the number of chips an actor
has access to might inadvertently reveal other sensitive information, and monitoring
computational workloads is likely unacceptably intrusive in the international context
with current techniques. This presents a challenge for arms control, especially when
trust is low and competition is high (Coe and Vaynman 2020). How severe is this
trade-off? What sorts of hardware, software, and institutional techniques might help
alleviate it?

Regulatory flight as a result of compute governance measures

Certain compute governance interventions can induce regulatory flight, where activi-
ties are moved to less heavily regulated jurisdictions. For example, recent U.S. chip
export controls incentivize the creation of an advanced chip supply chain without U.S.
inputs. Similarly, customers may prefer compute providers with the least ability to
monitor their compute capabilities and usage. What compute governance interven-
tions are most likely to see their effectiveness undermined by regulatory flight? How
can the chance of such flight be reduced? For instance, mechanisms for detecting
black market AI chips in smaller countries may be important, since this compute could
potentially be targeted by malicious actors who exploit differences in regulation.

Countries caught in geopolitical competition

The compute supply chain is increasingly shaped by geopolitical competition be-
tween great powers. How will other countries respond? To what extent can they avoid
getting involved in the conflict, or will they be forced to ally with one side? What
effects would this have on semiconductor supply chains?

Incentivizing responsible compute provision

How should responsible compute provision practices be incentivized and enforced
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by policymakers? Certain practices may require enforcement from the government
via regulation or export controls. Other practices could be incentivized via liability
regimes, where compute providers are held partly liable for lax attempts at identify-
ing and thwarting misuse. Others may be implemented voluntarily by the compute
provider industry.

Limits of scaling

What are the fundamental and practical limits to compute scaling? The past decade’s
growth in compute usage for notable AI systems has been driven by increases in spend-
ing as well as reductions in the cost of compute. If these trends continue, training a
state-of-the-art AI system would cost approximately 2.2% of U.S. GDP in 2032, similar
to the annual cost of the Apollo program (Heim 2023b; Lohn and Musser 2022).
Such spending would only be possible if the returns to scaling compute are immense.
Further, many have argued that reductions in compute efficiency are likely to slow
down, as Moore’s Law starts to hit its limits (Shalf 2020).

Piloting compute governance levers

To have confidence in deploying some of the levers described above at large scale,
pilot studies may be needed to test their viability (such as the compute measurement
pilot suggested by Brundage (Brundage, Avin, J. Wang, et al. 2020)), much as the
Joint Verification Experiment demonstrated the feasibility of seismographic detection
of nuclear testing (US Government 1988; Sykes and Ekström 1989).

Security-privacy trade-offs

Researchers should also more carefully analyze the trade-offs related to security
and privacy, and assess what sorts of hardware, software, and institutional techniques
might help alleviate such trade-offs. Further piloting, analysis, and debate are needed
in order to more fully understand how compute can and can’t enable effective AI
governance.
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